Beyond simulation and algorithm development, many developers increasingly use MATLAB even for product deployment in computationally heavy fields. This often demands that MATLAB codes run faster by leveraging the distributed parallelism of Graphics Processing Units (GPUs). While MATLAB successfully provides high-level functions as a simulation tool for rapid prototyping, the underlying details and knowledge needed for utilizing GPUs make MATLAB users hesitate to step into it. Accelerating MATLAB with GPUs offers a primer on bridging this gap. Starting with the basics, setting up MATLAB for CUDA (in Windows, Linux and Mac OS X) and profiling, it then guides users through advanced topics such as CUDA libraries. The authors share their experience developing algorithms using MATLAB, C++ and GPUs for huge datasets, modifying MATLAB codes to better utilize the computational power of GPUs, and integrating them into commercial software products. Throughout the book, they demonstrate many example codes that can be used as templates of C-MEX and CUDA codes for readers' projects. Download example codes from the publisher's website: http://booksite.elsevier.com/9780124080805/
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Jung W. Suh is a senior algorithm engineer and research scientist at KLA-Tencor. Dr. Suh received his Ph.D. from Virginia Tech in 2007 for his 3D medical image processing work. He was involved in the development of MPEG-4 and Digital Mobile Broadcasting (DMB) systems in Samsung Electronics. He was a senior scientist at HeartFlow, Inc., prior to joining KLA-Tencor. His research interests are in the fields of biomedical image processing, pattern recognition, machine learning and image/video compression. He has more than 30 journal and conference papers and 6 patents.
Youngmin Kim is a staff software engineer at Life Technologies where he has been programming in the area that requires real-time image acquisition and high-throughput image analysis. His previous works involved designing and developing software for automated microscopy and integrating imaging algorithms for real time analysis. He received his BS and MS from the University of Illinois at Urbana-Champaign in electrical engineering. Since then he developed 3D medical software at Samsung and led a software team at the startup company, prior to joining Life Technologies.
Beyond simulation and algorithm development, many developers increasingly use MATLAB even for product deployment in computationally heavy fields. This often demands that MATLAB codes run faster by leveraging the distributed parallelism of Graphics Processing Units (GPUs). While MATLAB successfully provides high-level functions as a simulation tool for rapid prototyping, the underlying details and knowledge needed for utilizing GPUs make MATLAB users hesitate to step into it.Accelerating MATLAB with GPUs offers a primer on bridging this gap.
Starting with the basics, setting up MATLAB for CUDA (in Windows, Linux and Mac OS X) and profiling, it then guides users through advanced topics such as CUDA libraries. The authors share their experience developing algorithms using MATLAB, C++ and GPUs for huge datasets, modifying MATLAB codes to better utilize the computational power of GPUs, and integrating them into commercial software products. Throughout the book, they demonstrate many example codes that can be used as templates of C-MEX and CUDA codes for readers projects. Download example codes from the publisher's website: http://booksite.elsevier.com/9780124080805/
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,79 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Beyond simulation and algorithm development, many developers increasingly use MATLAB even for product deployment in computationally heavy fields. Starting with the basics, setting up MATLAB for CUDA (in Windows, Linux and Mac OS X) and profiling, this title. Bestandsnummer des Verkäufers 5891532
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 258 pp. Englisch. Bestandsnummer des Verkäufers 9780124080805
Anzahl: 2 verfügbar
Anbieter: Biblio Pursuit, Lenhartsville, PA, USA
Soft cover. Zustand: Fine. 1st Edition. First Edition. A fine copy! No Marks, No Underlining, No Highlighting. Bestandsnummer des Verkäufers 057753
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering. Bestandsnummer des Verkäufers 9780124080805
Anzahl: 2 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-ELS-9780124080805
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 1st edition. 258 pages. 9.00x6.00x0.50 inches. In Stock. Bestandsnummer des Verkäufers __0124080804
Anzahl: 2 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. 439. Bestandsnummer des Verkäufers B9780124080805
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 258. Bestandsnummer des Verkäufers 53946681
Anzahl: 3 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 258. Bestandsnummer des Verkäufers 1854564588
Anzahl: 3 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 258. Bestandsnummer des Verkäufers 2654564582
Anzahl: 3 verfügbar