Introduction to Nature-Inspired Optimization brings together many of the innovative mathematical methods for non-linear optimization that have their origins in the way various species behave in order to optimize their chances of survival. The book describes each method, examines their strengths and weaknesses, and where appropriate, provides the MATLAB code to give practical insight into the detailed structure of these methods and how they work. Nature-inspired algorithms emulate processes that are found in the natural world, spurring interest for optimization. Lindfield/Penny provide concise coverage to all the major algorithms, including genetic algorithms, artificial bee colony algorithms, ant colony optimization and the cuckoo search algorithm, among others. This book provides a quick reference to practicing engineers, researchers and graduate students who work in the field of optimization.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
George Lindfield is a former lecturer in Mathematics and Computing at the School of Engineering and Applied Science, Aston University in the United Kingdom.
John Penny is an Emeritus Professor of Mechanical Engineering at the School of Engineering and Applied Science, Aston University in the United Kingdom.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 11,56 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 238 pages. 9.00x7.25x0.75 inches. In Stock. Bestandsnummer des Verkäufers __0128036362
Anzahl: 2 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. 520. Bestandsnummer des Verkäufers B9780128036365
Anzahl: Mehr als 20 verfügbar
Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien
Zustand: new. Questo è un articolo print on demand. Bestandsnummer des Verkäufers 3060484673fe70d298e54745cb1f4d8c
Anzahl: Mehr als 20 verfügbar