Extended Finite Element and Meshfree Methods provides an overview of, and investigates, recent developments in extended finite elements with a focus on applications to material failure in statics and dynamics. This class of methods is ideally suited for applications, such as crack propagation, two-phase flow, fluid-structure-interaction, optimization and inverse analysis because they do not require any remeshing. These methods include the original extended finite element method, smoothed extended finite element method (XFEM), phantom node method, extended meshfree methods, numerical manifold method and extended isogeometric analysis.
This book also addresses their implementation and provides small MATLAB codes on each sub-topic. Also discussed are the challenges and efficient algorithms for tracking the crack path which plays an important role for complex engineering applications.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Timon Rabczuk is Professor of Modeling and Simulation, and Chair of Computational Mechanics at the Bauhaus Universität Weimar, Germany. He has published more than 450 SCI papers, many of them on extended finite element and meshfree methods, multiscale methods and isogeometric analysis. He is editor-in-chief of CMC-Computers, Materials and Continua, associated editor of International Journal of Impact Engineering, assistant editor of Computational Mechanics, and executive editor of FSCE-Frontiers of Structural and Civil Engineering. He was listed as one of ISI Highly Cited Researchers in Computer Science and Engineering from 2014 up to now.
Jeong-Hoon Song is Assistant Professor of Civil, Environmental, and Architectural Engineering and faculty member of Materials Science and Engineering Program at the University of Colorado, Boulder, USA. He received a Ph.D. in Theoretical and Applied Mechanics at Northwestern University in 2008 and has worked in the area of computational mechanics and physics of solids to develop new computational methods and algorithms for various multiscale/multiphysics phenomena. He has authored over 45 peer-reviewed journal publications and two book chapters and has presented over 70 research lectures at national and international conferences, seminars, and workshops.
Xiaoying Zhuang is Associate Professor at the Institute of Continuum Mechanics at Leibniz Universität Hannover, Germany. She has been developing computational methods for two-dimensional and three-dimensional fracture problems using partition-of-unity methods, including meshfree methods, the extended finite element method (XFEM), the phantom node and finite cover method, and multiscale methods. She is on the editorial boards of international journals including Theoretical and Applied Fracture Mechanics, KSCE Journal of Civil Engineering, and Engineering Geology.
Cosmin Anitescu is a researcher at the Institute for Structural Mechanics of the Bauhaus Universität Weimar, Germany. His research focuses on the theory and application of extended finite elements, meshfree methods, and isogeometric analysis to engineering problems. He is currently the main contributor and maintainer of IGAFEM, an educational software package written in Matlab for solving computational mechanics problems.
Extended Finite Element and Meshfree Methods
by Timon Rabczuk, Jeong-Hoon Song, Xiaoying Zhuang, and Cosmin Anitescu
Introduces the essential theory, explores the latest research, and explains the implementation of XFEM and meshfree modeling methods.
Extended Finite Element and Meshfree Methods
provides an overview of and investigates recent developments in extended finite elements with a focus on application to material failure in statics and dynamics. This class of methods is ideally suited for applications such as crack propagation, two-phase flow, fluid-structure-interaction, optimization, and inverse analysis because they do not require any remeshing. These methods include the original extended finite element method, smoothed extended finite element method (XFEM), phantom node method, extended meshfree methods, numerical manifold method, and extended isogeometric analysis.
This book also addresses their implementation and provides small Matlab codes on each sub-topic. Also discussed are challenges and efficient algorithms for tracking the crack path, which plays an important role for complex engineering applications.About the AuthorsTimon Rabczuk is Professor of Modeling and Simulation, and Chair of Computational Mechanics at the Bauhaus Universität Weimar, Germany. He has published more than 450 SCI papers, many of them on extended finite element and meshfree methods, multiscale methods and isogeometric analysis. He is editor-in-chief of CMC-Computers, Materials and Continua, associated editor of International Journal of Impact Engineering, assistant editor of Computational Mechanics, and executive editor of FSCE-Frontiers of Structural and Civil Engineering. He was listed as one of ISI Highly Cited Researchers in Computer Science and Engineering from 2014 up to now.
Jeong-Hoon Song
is Assistant Professor of Civil, Environmental, and Architectural Engineering and faculty member of Materials Science and Engineering Program at the University of Colorado, Boulder, USA. He received a Ph.D. in Theoretical and Applied Mechanics at Northwestern University in 2008 and has worked in the area of computational mechanics and physics of solids to develop new computational methods and algorithms for various multiscale/multiphysics phenomena. He has authored over 45 peer-reviewed journal publications and two book chapters and has presented over 70 research lectures at national and international conferences, seminars, and workshops.
Xiaoying Zhuang
is Associate Professor at the Institute of Continuum Mechanics at Leibniz Universität Hannover, Germany. She has been developing computational methods for two-dimensional and three-dimensional fracture problems using partition-of-unity methods, including meshfree methods, the extended finite element method (XFEM), the phantom node and finite cover method, and multiscale methods. She is on the editorial boards of international journals including Theoretical and Applied Fracture Mechanics, KSCE Journal of Civil Engineering, and Engineering Geology.
Cosmin Anitescu
is a researcher at the Institute for Structural Mechanics of the Bauhaus Universität Weimar, Germany. His research focuses on the theory and application of extended finite elements, meshfree methods, and isogeometric analysis to engineering problems. He is currently the main contributor and maintainer of IGAFEM, an educational software package written in Matlab for solving computational mechanics problems.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 400. Bestandsnummer des Verkäufers 369622414
Anzahl: 3 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 400. Bestandsnummer des Verkäufers 26376455761
Anzahl: 3 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 400 pages. 9.25x6.25x1.50 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __0128141069
Anzahl: 2 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 30752301-n
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Extended Finite Element and Meshfree Methods provides an overview of, and investigates, recent developments in extended finite elements with a focus on applications to material failure in statics and dynamics. This class of methods is ideally suited for applications, such as crack propagation, two-phase flow, fluid-structure-interaction, optimization and inverse analysis because they do not require any remeshing. These methods include the original extended finite element method, smoothed extended finite element method (XFEM), phantom node method, extended meshfree methods, numerical manifold method and extended isogeometric analysis. This book also addresses their implementation and provides small MATLAB codes on each sub-topic. Also discussed are the challenges and efficient algorithms for tracking the crack path which plays an important role for complex engineering applications. 638 pp. Englisch. Bestandsnummer des Verkäufers 9780128141069
Anzahl: 2 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2215580017760
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 400. Bestandsnummer des Verkäufers 18376455771
Anzahl: 3 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 30752301-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780128141069_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Extended Finite Element and Meshfree Methods provides an overview of, and investigates, recent developments in extended finite elements with a focus on applications to material failure in statics and dynamics. This class of methods is ideally suit. Bestandsnummer des Verkäufers 257098513
Anzahl: Mehr als 20 verfügbar