Anomaly Detection and Complex Event Processing over IoT Data Streams: With Application to eHealth and Patient Data Monitoring presents advanced processing techniques for IoT data streams and the anomaly detection algorithms over them. The book brings new advances and generalized techniques for processing IoT data streams, semantic data enrichment with contextual information at Edge, Fog and Cloud as well as complex event processing in IoT applications. The book comprises fundamental models, concepts and algorithms, architectures and technological solutions as well as their application to eHealth. Case studies, such as the bio-metric signals stream processing are presented -the massive amount of raw ECG signals from the sensors are processed dynamically across the data pipeline and classified with modern machine learning approaches including the Hierarchical Temporal Memory and Deep Learning algorithms.
The book discusses adaptive solutions to IoT stream processing that can be extended to different use cases from different fields of eHealth, to enable a complex analysis of patient data in a historical, predictive and even prescriptive application scenarios. The book ends with a discussion on ethics, emerging research trends, issues and challenges of IoT data stream processing.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Patrick Schneider holds a BSc in Business Informatics from the DHBW Mannheim, Germany, and an MSc in Master in Informatics Research Innovation-Data Science from the Faculty of Informatics of Barcelona at the Technical University of Catalonia (UPC). He is affiliate teaching staff at Open University of Catalonia (UOC). His areas of interest include - but are not limited to - Data Science, focusing on Real-World application of Machine Learning with specific emphasis in IoT, Big Data architectures, Process Optimization and Process Mining. He regularly participates in Program Committees of International Conferences.
Fatos Xhafa, PhD in Computer Science, is Full Professor at the Technical University of Catalonia (UPC), Barcelona, Spain. He has held various tenured and visiting professorship positions. He was a Visiting Professor at the University of Surrey, UK (2019/2020), Visiting Professor at the Birkbeck College, University of London, UK (2009/2010) and a Research Associate at Drexel University, Philadelphia, USA (2004/2005). He was a Distinguished Guest Professor at Hubei University of Technology, China, for the duration of three years (2016-2019). Prof. Xhafa has widely published in peer reviewed international journals, conferences/workshops, book chapters, edited books and proceedings in the field (H-index 55). He has been awarded teaching and research merits by the Spanish Ministry of Science and Education, by IEEE conferences and best paper awards. Prof. Xhafa has an extensive editorial service. He is founder and Editor-In-Chief of Internet of Things - Journal - Elsevier (Scopus and Clarivate WoS Science Citation Index) and of International Journal of Grid and Utility Computing, (Emerging Sources Citation Index), and AE/EB Member of several indexed Int'l Journals. Prof. Xhafa is a member of IEEE Communications Society, IEEE Systems, Man & Cybernetics Society and Founder Member of Emerging Technical Subcommittee of Internet of Things.
His research interests include IoT and Cloud-to-thing continuum computing, massive data processing and collective intelligence, optimization, security and trustworthy computing and machine learning, among others. He can be reached at fatos@cs.upc.edu. Please visit also http://www.cs.upc.edu/~fatos/ and at http://dblp.uni-trier.de/pers/hd/x/Xhafa:Fatos
<i>Anomaly Detection and Complex Event Processing over IoT Data Streams: With Application to eHealth and Patient Data Monitoring</i> presents the advanced processing techniques for IoT data streams, with a case study in the field of eHealth, namely, a classification scenario over an Electrocardiogram (ECG) stream.<br><br>Bio-metric signals, such as the massive amount of raw ECG signals from the sensors are processed dynamically across the data pipeline and classified with modern machine learning approaches based on the Hierarchical Temporal Memory (HTM) and Convolutional Neural Network (CNN) algorithms. Discusses adaptive solutions that can be extended to other use cases to enable a complex analysis of patient data in a historical, predictive, and even prescriptive application scenario will be discussed.<br><br>The book brings new advances and generalized techniques for processing an IoT data streams, semantic data enrichment with contextual information at Edge, Fog, and Cloud as well as complex event processing in IoT applications from health domain.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 2,25 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 8,00 für den Versand von Italien nach USA
Versandziele, Kosten & DauerAnbieter: Brook Bookstore On Demand, Napoli, NA, Italien
Zustand: new. Questo è un articolo print on demand. Bestandsnummer des Verkäufers dc89fa618b9571c3b203c37f00a07579
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 392008232
Anzahl: 3 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 1st edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26388640247
Anzahl: 3 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 43143409-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 270 pages. 9.00x6.00x0.83 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __0128238186
Anzahl: 2 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18388640253
Anzahl: 3 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. 860. Bestandsnummer des Verkäufers B9780128238189
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780128238189_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 43143409-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 43143409
Anzahl: Mehr als 20 verfügbar