Verwandte Artikel zu Biometric Authentication: A Machine Learning Approach...

Biometric Authentication: A Machine Learning Approach (paperback) (Prentice Hall Information and System Sciences Series) - Softcover

 
9780137074839: Biometric Authentication: A Machine Learning Approach (paperback) (Prentice Hall Information and System Sciences Series)

Inhaltsangabe

A breakthrough approach to improving biometrics performance Constructing robust information processing systems for face and voice recognition Supporting high-performance data fusion in multimodal systems Algorithms, implementation techniques, and application examples Machine learning: driving significant improvements in biometric performance As they improve, biometric authentication systems are becoming increasingly indispensable for protecting life and property. This book introduces powerful machine learning techniques that significantly improve biometric performance in a broad spectrum of application domains. Three leading researchers bridge the gap between research, design, and deployment, introducing key algorithms as well as practical implementation techniques. They demonstrate how to construct robust information processing systems for biometric authentication in both face and voice recognition systems, and to support data fusion in multimodal systems. Coverage includes: How machine learning approaches differ from conventional template matching Theoretical pillars of machine learning for complex pattern recognition and classification Expectation-maximization (EM) algorithms and support vector machines (SVM) Multi-layer learning models and back-propagation (BP) algorithms Probabilistic decision-based neural networks (PDNNs) for face biometrics Flexible structural frameworks for incorporating machine learning subsystems in biometric applications Hierarchical mixture of experts and inter-class learning strategies based on class-based modular networks Multi-cue data fusion techniques that integrate face and voice recognition Application case studies

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Sun-Yuan Kung is a professor of electrical engineering at Princeton University. His research and teaching interests include VLSI signal processing; neural networks; digital signal, image, and video processing; and multimedia information systems. His books include VLSI Array Processors and Digital Neural Networks (Prentice Hall PTR). Man-Wai Mak is an assistant professor at The Hong Kong Polytechnic University and chairman of the IEEE Hong Kong Section Computer Chapter. His research interests include speaker recognition, machine learning, and neural networks. Shang-Hung Lin is a senior architect at Nvidia, a leader in video and imaging products.

Von der hinteren Coverseite

  • A breakthrough approach to improving biometrics performance
  • Constructing robust information processing systems for face and voice recognition
  • Supporting high-performance data fusion in multimodal systems
  • Algorithms, implementation techniques, and application examples

Machine learning: driving significant improvements in biometric performance

As they improve, biometric authentication systems are becoming increasingly indispensable for protecting life and property. This book introduces powerful machine learning techniques that significantly improve biometric performance in a broad spectrum of application domains.

Three leading researchers bridge the gap between research, design, and deployment, introducing key algorithms as well as practical implementation techniques. They demonstrate how to construct robust information processing systems for biometric authentication in both face and voice recognition systems, and to support data fusion in multimodal systems.

Coverage includes:

  • How machine learning approaches differ from conventional template matching
  • Theoretical pillars of machine learning for complex pattern recognition and classification
  • Expectation-maximization (EM) algorithms and support vector machines (SVM)
  • Multi-layer learning models and back-propagation (BP) algorithms
  • Probabilistic decision-based neural networks (PDNNs) for face biometrics
  • Flexible structural frameworks for incorporating machine learning subsystems in biometric applications
  • Hierarchical mixture of experts and inter-class learning strategies based on class-based modular networks
  • Multi-cue data fusion techniques that integrate face and voice recognition
  • Application case studies

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 11,59 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780131478244: Biometric Authentication: A Machine Learning Approach

Vorgestellte Ausgabe

ISBN 10:  0131478249 ISBN 13:  9780131478244
Verlag: Prentice Hall, 2004
Hardcover

Suchergebnisse für Biometric Authentication: A Machine Learning Approach...

Beispielbild für diese ISBN

S.Y. Kung/ M.W. Mak/ S.H. Lin
Verlag: Prentice Hall, 2010
ISBN 10: 0137074832 ISBN 13: 9780137074839
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 1st edition. 496 pages. 9.08x7.04x1.05 inches. In Stock. Bestandsnummer des Verkäufers zk0137074832

Verkäufer kontaktieren

Neu kaufen

EUR 224,07
Währung umrechnen
Versand: EUR 11,59
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb