Verwandte Artikel zu Pattern Recognition Using Neural Networks: Theory and...

Pattern Recognition Using Neural Networks: Theory and Algorithms for Engineers and Scientists - Hardcover

 
9780195079203: Pattern Recognition Using Neural Networks: Theory and Algorithms for Engineers and Scientists

Inhaltsangabe

Pattern Regcognition with Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks from an algorithmic approach. The author has written a real-world practical "why-and-how" text that provides a refreshing contrast to competing texts' thoeretical appraoch and "pie-in-the-sky" claims. The text explores mulitple layered preceptrons and describes network types such as functional link, radial basis function, learning vector quantanization and self-organizing. The author also discusses recent clustering methods. This text is suitable for an advanced undergraduate course in pattern recognition or neural networks, and is also useful as a reference and a resource.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Carl Grant Looney is Professor and Director of the Graduate Program in the Computer Science Department at the University of Nevada in Reno.

Von der hinteren Coverseite

Pattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refreshing what-why-and-how text that contrasts with the theoretical approach and pie-in-the-sky hyperbole of many books on neural networks. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance, graphical and structural methods, and Bayesian discrimination. Pattern recognizers evolve across the sections into perceptrons, a layer of perceptrons, multiple-layered perceptrons, functional link nets, and radial basis function networks. Other networks covered in the process are learning vector quantization networks, self-organizing maps, and recursive neural networks. Backpropagation is derived in complete detail for one and two hidden layers for both unipolar and bipolar sigmoid activation functions. The more efficient fullpropagation, quickpropagation, cascade correlation, and various methods such as strategic search, conjugate gradients, and genetic algorithms are described. Advanced methods are also described, including the full-training algorithms for radial basis function networks and random vector functional link nets, as well as competitive learning networks and fuzzy clustering algorithms. This textbook is ideally suited for a senior undergraduate or graduate course in pattern recognition or neural networks for students in computer science, electrical engineering, and computer engineering. It is also a useful reference and resource for researchers and professionals.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagOxford University Press
  • Erscheinungsdatum1997
  • ISBN 10 0195079205
  • ISBN 13 9780195079203
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten484
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Gut
Zustand: Gut | Seiten: 480 | Sprache...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

EUR 32,17 für den Versand von Australien nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Pattern Recognition Using Neural Networks: Theory and...

Beispielbild für diese ISBN

Carl G. Looney
Verlag: OXFORD UNIV PR, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Gut. Zustand: Gut | Seiten: 480 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 1204424/3

Verkäufer kontaktieren

Gebraucht kaufen

EUR 36,33
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Looney
ISBN 10: 0195079205 ISBN 13: 9780195079203
Neu Hardcover

Anbieter: AussieBookSeller, Truganina, VIC, Australien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. Pattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refreshing what-why-and-how text that contrasts with the theoretical approach and pie-in-the-sky hyperbole of many books on neural networks. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance,graphical and structural methods, and Bayesian discrimination. Pattern recognizers evolve across the sections into perceptrons, a layer of perceptrons, multiple-layered perceptrons, functionallink nets, and radial basis function networks. Other networks covered in the process are learning vector quantization networks, self-organizing maps, and recursive neural networks. Backpropagation is derived in complete detail for one and two hidden layers for both unipolar and bipolar sigmoid activation functions. The more efficient fullpropagation, quickpropagation, cascade correlation, and various methods such as strategic search, conjugate gradients, and genetic algorithms are described.Advanced methods are also described, including the full training algorithms for radial basis function networks and random vector functional link nets, as well as competitive learning networks and fuzzyclustering algorithms. Special topics covered include: feature engineering data engineering neural engineering of network architectures validation and verification of the trained networks This textbook is ideally suited for a senior undergraduate or graduate course in pattern recognition or neural networks for students in computer science, electrical engineering, and computer engineering. It is also a useful reference andresource for researchers and professionals. A text covering traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance, graphical and structural methods, and Bayesian discrimination. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9780195079203

Verkäufer kontaktieren

Neu kaufen

EUR 267,22
Währung umrechnen
Versand: EUR 32,17
Von Australien nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Looney, Carl G.
Verlag: Oxford University Press, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. KlappentextrnrnPattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refres. Bestandsnummer des Verkäufers 897460756

Verkäufer kontaktieren

Neu kaufen

EUR 323,13
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Looney, Carl G.
Verlag: Oxford University Press, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Neu Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 73690-n

Verkäufer kontaktieren

Neu kaufen

EUR 306,01
Währung umrechnen
Versand: EUR 17,38
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Looney, Carl G.
Verlag: Oxford University Press, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Neu Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 73690-n

Verkäufer kontaktieren

Neu kaufen

EUR 308,37
Währung umrechnen
Versand: EUR 17,52
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Looney, Carl G.
Verlag: Oxford University Press, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Gebraucht Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 73690

Verkäufer kontaktieren

Gebraucht kaufen

EUR 338,58
Währung umrechnen
Versand: EUR 17,38
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Looney, Carl G.
Verlag: Oxford University Press, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Gebraucht Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 73690

Verkäufer kontaktieren

Gebraucht kaufen

EUR 345,65
Währung umrechnen
Versand: EUR 17,52
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Looney
ISBN 10: 0195079205 ISBN 13: 9780195079203
Neu Hardcover

Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. Pattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refreshing what-why-and-how text that contrasts with the theoretical approach and pie-in-the-sky hyperbole of many books on neural networks. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance,graphical and structural methods, and Bayesian discrimination. Pattern recognizers evolve across the sections into perceptrons, a layer of perceptrons, multiple-layered perceptrons, functionallink nets, and radial basis function networks. Other networks covered in the process are learning vector quantization networks, self-organizing maps, and recursive neural networks. Backpropagation is derived in complete detail for one and two hidden layers for both unipolar and bipolar sigmoid activation functions. The more efficient fullpropagation, quickpropagation, cascade correlation, and various methods such as strategic search, conjugate gradients, and genetic algorithms are described.Advanced methods are also described, including the full training algorithms for radial basis function networks and random vector functional link nets, as well as competitive learning networks and fuzzyclustering algorithms. Special topics covered include: feature engineering data engineering neural engineering of network architectures validation and verification of the trained networks This textbook is ideally suited for a senior undergraduate or graduate course in pattern recognition or neural networks for students in computer science, electrical engineering, and computer engineering. It is also a useful reference andresource for researchers and professionals. A text covering traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance, graphical and structural methods, and Bayesian discrimination. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9780195079203

Verkäufer kontaktieren

Neu kaufen

EUR 370,62
Währung umrechnen
Versand: EUR 29,21
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Looney
ISBN 10: 0195079205 ISBN 13: 9780195079203
Neu Hardcover

Anbieter: Grand Eagle Retail, Fairfield, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. Pattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refreshing what-why-and-how text that contrasts with the theoretical approach and pie-in-the-sky hyperbole of many books on neural networks. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance,graphical and structural methods, and Bayesian discrimination. Pattern recognizers evolve across the sections into perceptrons, a layer of perceptrons, multiple-layered perceptrons, functionallink nets, and radial basis function networks. Other networks covered in the process are learning vector quantization networks, self-organizing maps, and recursive neural networks. Backpropagation is derived in complete detail for one and two hidden layers for both unipolar and bipolar sigmoid activation functions. The more efficient fullpropagation, quickpropagation, cascade correlation, and various methods such as strategic search, conjugate gradients, and genetic algorithms are described.Advanced methods are also described, including the full training algorithms for radial basis function networks and random vector functional link nets, as well as competitive learning networks and fuzzyclustering algorithms. Special topics covered include: feature engineering data engineering neural engineering of network architectures validation and verification of the trained networks This textbook is ideally suited for a senior undergraduate or graduate course in pattern recognition or neural networks for students in computer science, electrical engineering, and computer engineering. It is also a useful reference andresource for researchers and professionals. A text covering traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance, graphical and structural methods, and Bayesian discrimination. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780195079203

Verkäufer kontaktieren

Neu kaufen

EUR 344,12
Währung umrechnen
Versand: EUR 65,22
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Looney, Carl G.
Verlag: Oxford University Press, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Gebraucht Hardcover

Anbieter: OM Books, Sevilla, SE, Spanien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Usado - bueno. Bestandsnummer des Verkäufers 9780195079203

Verkäufer kontaktieren

Gebraucht kaufen

EUR 422,00
Währung umrechnen
Versand: EUR 17,50
Von Spanien nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Es gibt 1 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen