Concentration inequalities for functions of independent random variables is an area of probability theory that has witnessed a great revolution in the last few decades, and has applications in a wide variety of areas such as machine learning, statistics, discrete mathematics, and high-dimensional geometry. Roughly speaking, if a function of many independent random variables does not depend too much on any of the variables then it is concentrated in the sense that with high probability, it is close to its expected value. This book offers a host of inequalities to illustrate this rich theory in an accessible way by covering the key developments and applications in the field.
The authors describe the interplay between the probabilistic structure (independence) and a variety of tools ranging from functional inequalities to transportation arguments to information theory. Applications to the study of empirical processes, random projections, random matrix theory, and threshold phenomena are also presented.
A self-contained introduction to concentration inequalities, it includes a survey of concentration of sums of independent random variables, variance bounds, the entropy method, and the transportation method. Deep connections with isoperimetric problems are revealed whilst special attention is paid to applications to the supremum of empirical processes.
Written by leading experts in the field and containing extensive exercise sections this book will be an invaluable resource for researchers and graduate students in mathematics, theoretical computer science, and engineering.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Stéphane Boucheron is a Professor in the Applied Mathematics and Statistics Department at Université Paris-Diderot, France.
; Gábor Lugosi is ICREA Research Professor in the Department of Economics at the Pompeu Fabra University in Barcelona, Spain.
; Pascal Massart is a Professor in the Department of Mathematics at Université de Paris-Sud, France.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 40,55 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Buch. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. An accessible account of the rich theory surrounding concentration inequalities in probability theory, with applications from machine learning and statistics to high-dimensional geometry. This book introduces key ideas and presents a detailed summary of the. Bestandsnummer des Verkäufers 594413957
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. reprint edition. 496 pages. 8.43x5.85x0.73 inches. In Stock. Bestandsnummer des Verkäufers __019876765X
Anzahl: 2 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. 740. Bestandsnummer des Verkäufers B9780198767657
Anzahl: 15 verfügbar
Anbieter: Buchpark, Maidenhead, Berkshire, Vereinigtes Königreich
Zustand: Fair. Condition: Fair | Pages: 496 | Language: English | Product Type: Books. Bestandsnummer des Verkäufers 26451255/24
Anzahl: 1 verfügbar
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Bestandsnummer des Verkäufers 019876765X-11-1
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. reprint edition. 496 pages. 8.43x5.85x0.73 inches. In Stock. Bestandsnummer des Verkäufers zk019876765X
Anzahl: 1 verfügbar
Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien
Zustand: new. Questo è un articolo print on demand. Bestandsnummer des Verkäufers 2fef96645ed6f8bd5ea3f96766076e9d
Anzahl: Mehr als 20 verfügbar