Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Introduction: A Furry, One-Ounce Human?,
1 • Containing Complexities in the Animal Behavior Genetics Laboratory,
2 • Animal Behavior Genetics, the Past and the Future,
3 • Building Epistemic Scaffolds for Modeling Work,
4 • Epistemic By-Products: Learning about Environments while Studying Genetics,
5 • Understanding Binge Drinking,
6 • Leaving the Laboratory,
Conclusion: An Expanded Vocabulary for the Laboratory,
Acknowledgments,
Appendix,
Notes,
Bibliography,
Index,
Containing Complexities in the Animal Behavior Genetics Laboratory
Ordinarily after the introductory behavior genetics class at Coast University, the graduate students dispersed almost immediately, but today everyone was unusually still. We were in a small classroom deep in the bowels of the teaching hospital, and Dr. Laura Martin, a senior investigator in the Department of Neuroscience, had just finished delivering a lecture on environmental interactions and mouse behavior. In her typical direct manner, she had presented experiment after experiment showing the variety of ways in which the environment could change a mouse's behavior. Not only could experiences in the womb or parental behavior early in life impact a mouse's later behavior, but even the placement of the cages in the mouse housing rooms or the light levels in the testing space could alter behavioral test results. Each slide layered on a new set of variables affecting mouse behavior until I felt as though I'd been buried in an avalanche of competing factors. Considered individually, each one of these factors seemed reasonable enough to take into account when setting up behavioral experiments, but their collective impact was overwhelming. Judging by my fellow graduate students' contemplative faces, I was not the only one feeling a mix of awe and frustration by the end of the lecture. In the semidarkness of the classroom, illuminated by the glow from Dr. Martin's final PowerPoint slide, this moment of shared stillness suddenly felt quite intimate. "With all of this complexity," one of the aspiring scientists remarked, breaking the silence, "it's hard to feel like you have a prayer." Dr. Martin nodded and reassured them that they were all in the same boat. Sometimes, she said, she felt depressed by it, too.
"Complex" was one of the most frequently used adjectives I heard duringmy time at Coast. Mouse behavior was complex, according to Coast researchers, as were the experimental setups used to test it. The resulting data sets and their interpretation were complex as well. The genetic factors underlying these complex behaviors were themselves complex, full of multiple interacting factors. As the scientists talked, complexity often began as a quality of the entities that they dealt with and transformed into an independent entity of its own that they grappled with. Researchers talked about complexity as though it was the ghost in the machine animating the objects they dealt with, making genes and neurotransmitters and mice behave in unpredictable, inscrutable ways. The mood that scientists slipped into during such conversations resembled the mix of awe and frustration I had experienced in the introductory behavior genetics class. Researchers talked about the complexity of biological processes reverently but also with a barely contained sense of exasperation that behavioral phenomena continually overflowed the boundaries of the experiments that they had so carefully constructed to contain those complexities.
This chapter explores what researchers at Coast meant when they described things as complex, and how they arrived at a sense of what it means to describe behavior in this way through their laboratory work. Describing entities or processes as complex is increasingly commonplace in the physical and life sciences, but the term signals different things to different practitioners. In physics and computer science, practitioners often employ "complex" in a quite specific sense to describe emergent phenomena arising from the interactions between individual components in a system. Marking something as complex, in these fields, means that the phenomenon is one that must be understood at the system level. As the physicist Philip Warren Anderson (1972) put it in a widely discussed essay, this view of complexity holds that "more is different," in the sense that the properties of the aggregates of many objects cannot be captured by studying the individual objects in isolation — they must be studied as an interacting system. In the life sciences, the term is often used more loosely to describe systems with many components, which may or may not have emergent properties that can only be understood at the system level. This understanding blurs the boundary some practitioners might draw between the "complex" and the "complicated" — that which must be understood at the system level versus that which in principle could be reduced to the sum of the contributions of individual components.
Researchers at Coast used the term in a variety of ways, only some of which overlapped with the definition that a physicist or computer scientist might provide. When some researchers invoked complexity, they were expressing a commitment similar to Anderson's — that behaviors could not be studied reductionistically, one gene at a time. But for other researchers, complexity meant only that behaviors were multigenic and that there was no single "gene for" a particular disorder waiting to be discovered. In other situations where researchers invoked complexity, they seemed to be making a claim not about the nature of behavior at all but rather about the difficulties or frustrations they experienced in trying to study it.
In light of the polysemy of Coast researchers' uses of "complexity," I argue that their complexity talk is better understood as expressing epistemological commitments rather than ontological ones. As other analysts have argued, scientists' uses of the term serve functions other than making claims about their views on the nature of the phenomena they are studying. As Arribas-Ayllon, Bartlett, and Featherstone (2010) argue, describing behavioral disorders as "complex" performs rhetorical work for knowledge communities by accounting for past failures in their field. Complexity explains why previous research efforts might have produced inconsistent findings about how genes impact psychiatric disorders, and it constructs careful optimism about the promises of new methodologies and about what the field can hope to accomplish.
For the behavior geneticists at Coast, complexity talk served to cultivate shared stances on knowledge production while allowing for a certain degree of ontological heterogeneity within the community. Despite the ubiquitous use of complex as an adjective, researchers at Coast did not necessarily share a unified vision about the underlying reality of behavior. What they did share, however, was an agreement that working from the assumption that behaviors emerged from the interaction of multiple, small genetic and environmental factors was the best way to produce credible scientific knowledge about them. In describing behaviors as complex, researchers articulated assumptions about what kinds of barriers might lie between them...
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Midtown Scholar Bookstore, Harrisburg, PA, USA
Hardcover. Zustand: Good. Good - Bumped and creased book with tears to the extremities, but not affecting the text block, may have remainder mark or previous owner's name - GOOD Standard-sized. Bestandsnummer des Verkäufers M022654592XZ3
Anzahl: 3 verfügbar
Anbieter: INDOO, Avenel, NJ, USA
Zustand: New. Brand New. Bestandsnummer des Verkäufers 9780226545929
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2018. Hardcover. . . . . . Bestandsnummer des Verkäufers V9780226545929
Anzahl: 1 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers FW-9780226545929
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers FW-9780226545929
Anzahl: 4 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Hardcover. Zustand: New. Bestandsnummer des Verkäufers 6666-WLY-9780226545929
Anzahl: 4 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2018. Hardcover. . . . . . Books ship from the US and Ireland. Bestandsnummer des Verkäufers V9780226545929
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 381049760
Anzahl: 3 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 255 pages. 9.25x6.25x0.75 inches. In Stock. Bestandsnummer des Verkäufers __022654592X
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26381805695
Anzahl: 3 verfügbar