A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.
The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Kevin P. Murphy is a Senior Staff Research Scientist at Google Research.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 6,77 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: BooksRun, Philadelphia, PA, USA
Hardcover. Zustand: Good. Illustrated. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Bestandsnummer des Verkäufers 0262018020-11-1
Anzahl: 1 verfügbar
Anbieter: Bellwetherbooks, McKeesport, PA, USA
hardcover. Zustand: Very Good. Illustrated. Very Good Condition - May show some limited signs of wear and may have a remainder mark. Pages and dust cover are intact and not marred by notes or highlighting. Bestandsnummer des Verkäufers MIT-HC-VG-0262018020
Anzahl: 1 verfügbar
Anbieter: SecondSale, Montgomery, IL, USA
Zustand: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Bestandsnummer des Verkäufers 00087871973
Anzahl: 1 verfügbar
Anbieter: SecondSale, Montgomery, IL, USA
Zustand: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Bestandsnummer des Verkäufers 00086014445
Anzahl: 2 verfügbar
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In fair condition, suitable as a study copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,2050grams, ISBN:9780262018029. Bestandsnummer des Verkäufers 9547682
Anzahl: 1 verfügbar
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In fair condition, suitable as a study copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,2050grams, ISBN:9780262018029. Bestandsnummer des Verkäufers 9547683
Anzahl: 1 verfügbar
Anbieter: Barnaby, Oxford, Vereinigtes Königreich
Hardcover. Zustand: Good. Former academic library book, with library bookplate to front pastedown; ink stamps to endpapers and text-block edges, including withdrawn stamp; spine label and shelf number to spine. Some pages a little marked and creased, but free from notes or highlighting. Overall, sound and serviceable. Publisher's note: "This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online"--Back cover. Size: 23.6 x 21.1 x 4.1 cm. xxix, 1067 pp. Shipped Weight: 1-2 kilos. Category: Computers & Internet; Machine learning; Probabilities; Probabilities; ISBN: 0262018020. ISBN/EAN: 9780262018029. Add. Inventory No: 250310SH7205. Bestandsnummer des Verkäufers 250310SH7205
Anzahl: 4 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-3440
Anzahl: 1 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Bestandsnummer des Verkäufers NW9780262018029
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 1104. Bestandsnummer des Verkäufers 2654480373
Anzahl: 3 verfügbar