A Case for Climate Engineering (Boston Review Books) - Hardcover

Keith, David

 
9780262019828: A Case for Climate Engineering (Boston Review Books)

Inhaltsangabe

A leading scientist argues that we must consider deploying climate engineering technology to slow the pace of global warming.

Climate engineering—which could slow the pace of global warming by injecting reflective particles into the upper atmosphere—has emerged in recent years as an extremely controversial technology. And for good reason: it carries unknown risks and it may undermine commitments to conserving energy. Some critics also view it as an immoral human breach of the natural world. The latter objection, David Keith argues in A Scientist's Case for Climate Engineering, is groundless; we have been using technology to alter our environment for years. But he agrees that there are large issues at stake.

A leading scientist long concerned about climate change, Keith offers no naïve proposal for an easy fix to what is perhaps the most challenging question of our time; climate engineering is no silver bullet. But he argues that after decades during which very little progress has been made in reducing carbon emissions we must put this technology on the table and consider it responsibly. That doesn't mean we will deploy it, and it doesn't mean that we can abandon efforts to reduce greenhouse gas emissions. But we must understand fully what research needs to be done and how the technology might be designed and used. This book provides a clear and accessible overview of what the costs and risks might be, and how climate engineering might fit into a larger program for managing climate change.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

David Keith has worked near the interface between climate science, energy technology, and public policy for twenty years. He is currently the Gordon McKay Professor of Applied Physics in the School of Engineering and Applied Sciences (SEAS) at Harvard University and Professor of Public Policy at the Harvard Kennedy School.

Auszug. © Genehmigter Nachdruck. Alle Rechte vorbehalten.

A CASE FOR CLIMATE ENGINEERING

By David Keith

The MIT Press

Copyright © 2013 Massachusetts Institute of Technology
All rights reserved.
ISBN: 978-0-262-01982-8

Contents

Preface, ix,
1 Engineering the World's Sunshine, 1,
2 Climate Risk, 21,
3 Science, 43,
4 Technology and Design, 75,
5 Ethics and Politics, 121,
6 Prospect, 159,
Acknowledgments, 177,
Notes, 183,
About the author, 197,


PREFACE

It is possible to cool the planet by injecting reflective particles of sulfuric acid into the upper atmosphere where they would scatter a tiny fraction of incoming sunlight back to space, creating a thin sunshade for the ground beneath. To say that it's "possible" understates the case: it is cheap and technically easy. The specialized aircraft and dispersal systems required to get started could be deployed in a few years for the price of a Hollywood blockbuster.

I don't advocate such a quick-and-dirty start to climate engineering, nor do I expect any such sudden action, but the underlying science is sound and the technological developments are real. This single technology could increase the productivity of ecosystems across the planet and stop global warming; it could increase crop yields, particularly those in the hottest and poorest parts of the world. It is hyperbolic but not inaccurate to call it a cheap tool that could green the world.

Solar geoengineering is a set of emerging technologies to manipulate the climate. These technologies could partially counteract climate change caused by the gradual accumulation of carbon dioxide. Deliberately adding one pollutant to temporarily counter another is a brutally ugly technical fix, yet that is the essence of the suggestion that sulfur be injected into the stratosphere to limit the damage caused by the carbon we've pumped into the air.

Solar geoengineering is an extraordinarily powerful tool. But it is also dangerous. It entails novel environmental risks. And, like climate change itself, its effects are unequal, so even if it makes many farmers better off, others will be worse off. It is so cheap that almost any nation could afford to alter the earth's climate, a fact that may accelerate the shifting balance of global power, raising security concerns that could, in the worst case, lead to war. If misused, geoengineering could drive extraordinarily rapid climate change, imperiling global food supply. In the long run, stable control of geoengineering may require new forms of global governance and may prove as disruptive to the political order of the 21st century as nuclear weapons were for the 20th.

Many people feel a visceral sense of repugnance on first hearing about geoengineering. For some, the repugnance crystallizes into moral outrage against the very idea that the topic is being discussed; for others, exposure to debate about geoengineering brings with it an appreciation of the hard choices at its roots and an understanding that there are credible arguments for and against. That intuitive revulsion strikes me as healthy; our gadget-obsessed culture is all too easily drawn to a shiny new tech fix. A narrow focus on a technology's power too easily blinds us to its risks.

It's tempting to wish climate change away by denying the science or by asserting that a quick shift to new clean energy sources provides an easy way out. But there is no magic bullet. We cannot make sound decisions by supposing the world is as we wish it were: the science of climate risk is solid, and the inertia of the carbon cycle combined with that of the world's economy mean that efforts to cut emissions can only moderate (but not reverse) climate change over this century.

As with the capacity to engineer our own genome, humanity is rapidly developing the capacity to engineer the planetary environment. Geoengineering's powerful potential demands a broad debate that must include not only credible arguments for and against such an intervention, but also, as with genetic engineering, an appreciation of the large questions it raises about nature and technology on a planetary scale.

I myself have concluded that it makes sense to move with deliberate haste towards deployment of geoengineering. You may well reach a different conclusion. My goal is simply to convince you that it's a hard choice.


* * *

In this book I attempt a synoptic view of solar geoengineering for the educated non-specialist who is willing to work their way through some complex arguments. I am not a disinterested bystander. Every author's story is shaped by their biases. The remainder of this preface discloses some of mine.

Wilderness has shaped my life. From weekend canoe trips to long solo ski expeditions in the high Arctic, I am fortunate to have spent about a year of my life traveling in the big wilds far from roads. My thinking was shaped by a family interest in environmental protection; my father played an early role in the science and regulation of DDT, and his brother helped lead the creation of birding as a social activity separate from scientific ornithology. I am an oddball environmentalist. A bit of a liberal redneck perhaps, as I have taken part in Earth First! actions and Christmas bird counts, yet I have a freezer filled with last fall's mule deer. I am also a tinkerer and a technophile. From lucking into a job at a top laser physics lab in high school, to teaching myself oxy-acetylene welding as I rebuilt the rusted frame of my first car, and then winning a prize for the best doctorate in experimental physics at M.I.T., I have always loved getting my hands dirty with hardware. Turning away from physics because it did not seem to engage real-world problems, I started to work in climate and energy before the end of graduate school. In 1989 I stumbled into geoengineering. I was drawn in by the lack of high-quality analysis of either the technology or the policy implications, a lack that seemed odd given the potential importance of geoengineering to the climate's future.

I have worked on this topic for most of my academic career. While my academic writing aims at objectivity and dispassion, here I venture educated guesses that go beyond what can be defended in an academic research paper. While I aim at objectivity I don't hide my personal views. I have done my best to draw a clear distinction my judgment about what the facts are from my personal, value-laden judgments about what we ought to do.

My passion for this topic is rooted in a concern that environmentalism has lost its way. The language of environmental advocacy has become increasingly technocratic. Calls for action rely almost exclusively on (seemingly) objective quantitative measures of cost and benefit that amount to a crude appeal to self-interest. We are urged to protect natural landscapes not because walking through them brings pleasure, but because of the ecosystem services they yield, services like oxygen and clean water. These arguments have merit, but I think they obscure much of what actually drives people's choices. If we are protecting a rainforest because it stores carbon or yields wonder drugs, then we should be happy to cut down the forest if some carbon storage machine or molecular biotech lab can better provide these services. If we are protecting a wetland for its ability to hold and purify water then we should be happy to replace it with a housing development if that development includes technologies for water storage and filtration that does these jobs better than the wetland. For me the utilitarian benefits of nature are a grossly insufficient measure of its value.

I also worry...

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.