An introduction to the intellectual foundations and practical utility of the recent work on fairness and machine learning.
Fairness and Machine Learning introduces advanced undergraduate and graduate students to the intellectual foundations of this recently emergent field, drawing on a diverse range of disciplinary perspectives to identify the opportunities and hazards of automated decision-making. It surveys the risks in many applications of machine learning and provides a review of an emerging set of proposed solutions, showing how even well-intentioned applications may give rise to objectionable results. It covers the statistical and causal measures used to evaluate the fairness of machine learning models as well as the procedural and substantive aspects of decision-making that are core to debates about fairness, including a review of legal and philosophical perspectives on discrimination. This incisive textbook prepares students of machine learning to do quantitative work on fairness while reflecting critically on its foundations and its practical utility.
• Introduces the technical and normative foundations of fairness in automated decision-making
• Covers the formal and computational methods for characterizing and addressing problems
• Provides a critical assessment of their intellectual foundations and practical utility
• Features rich pedagogy and extensive instructor resources
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Solon Barocas is a Principal Researcher in the New York City lab of Microsoft Research, where he is a member of the Fairness, Accountability, Transparency, and Ethics in AI (FATE) research group. He is an Adjunct Assistant Professor in the Department of Information Science at Cornell University and Faculty Associate at the Berkman Klein Center for Internet & Society at Harvard University.
Moritz Hardt is Director of Social Foundations of Computation at the Max Planck Institute for Intelligent Systems and coauthor of Patterns, Predictions, and Actions: Foundations of Machine Learning.
Arvind Narayanan is Professor of Computer Science at Princeton University and director of the Center for Information Technology Policy. His work was among the first to show how machine learning reflects cultural stereotypes, and he led the Princeton Web Transparency and Accountability Project to uncover how companies collect and use our personal information.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,37 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 3,41 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Bellwetherbooks, McKeesport, PA, USA
hardcover. Zustand: Fine. LIKE NEW!!! Has a red or black remainder mark on bottom/exterior edge of pages. Bestandsnummer des Verkäufers 466071
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26395962012
Anzahl: 3 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 45709743
Anzahl: 2 verfügbar
Anbieter: INDOO, Avenel, NJ, USA
Zustand: As New. Unread copy in mint condition. Bestandsnummer des Verkäufers RH9780262048613
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 45709743-n
Anzahl: 2 verfügbar
Anbieter: INDOO, Avenel, NJ, USA
Zustand: New. Brand New. Bestandsnummer des Verkäufers 9780262048613
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18395962006
Anzahl: 3 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9780262048613
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 401496387
Anzahl: 4 verfügbar
Anbieter: ALLBOOKS1, Direk, SA, Australien
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Bestandsnummer des Verkäufers SHUB69859
Anzahl: 8 verfügbar