The first comprehensive introduction to Multi-Agent Reinforcement Learning (MARL), covering MARL’s models, solution concepts, algorithmic ideas, technical challenges, and modern approaches.
Multi-Agent Reinforcement Learning (MARL), an area of machine learning in which a collective of agents learn to optimally interact in a shared environment, boasts a growing array of applications in modern life, from autonomous driving and multi-robot factories to automated trading and energy network management. This text provides a lucid and rigorous introduction to the models, solution concepts, algorithmic ideas, technical challenges, and modern approaches in MARL. The book first introduces the field’s foundations, including basics of reinforcement learning theory and algorithms, interactive game models, different solution concepts for games, and the algorithmic ideas underpinning MARL research. It then details contemporary MARL algorithms which leverage deep learning techniques, covering ideas such as centralized training with decentralized execution, value decomposition, parameter sharing, and self-play. The book comes with its own MARL codebase written in Python, containing implementations of MARL algorithms that are self-contained and easy to read. Technical content is explained in easy-to-understand language and illustrated with extensive examples, illuminating MARL for newcomers while offering high-level insights for more advanced readers.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Stefano V. Albrecht is Associate Professor in the School of Informatics at the University of Edinburgh, where he leads the Autonomous Agents Research Group. His research focuses on the development of machine learning algorithms for autonomous systems control and decision making, with a particular focus on deep reinforcement learning and multi-agent interaction.
Filippos Christianos is a research scientist in multi-agent deep reinforcement learning focusing on how MARL algorithms can be used efficiently and the author of multiple popular MARL-focused code libraries.
Lukas Schäfer is a researcher focusing on the development of more generalizable, robust, and sample-efficient decision making using deep reinforcement learning, with a particular focus on multi-agent reinforcement learning.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Books From California, Simi Valley, CA, USA
hardcover. Zustand: Fine. Bestandsnummer des Verkäufers mon0003786958
Anbieter: Books From California, Simi Valley, CA, USA
hardcover. Zustand: Good. Bestandsnummer des Verkäufers mon0003924496
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26401697681
Anbieter: Goodvibes Books, STAFFORD, TX, USA
Zustand: New. New Book. Bestandsnummer des Verkäufers 0262049376-SBX
Anbieter: Big River Books, Powder Springs, GA, USA
Zustand: good. This book is in good condition. The cover has minor creases or bends. The binding is tight and pages are intact. Some pages may have writing or highlighting. Bestandsnummer des Verkäufers BRV.0262049376.G
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 47510393-n
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEOCT25-303050
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-301214
Anbieter: SMASS Sellers, IRVING, TX, USA
Zustand: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Bestandsnummer des Verkäufers ASNT3-301214
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9780262049375
Anzahl: 3 verfügbar