Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Andrew G. Barto is Professor of Computer Science at the University of Massachusetts.
Richard S. Sutton is Senior Research Scientist, Department of Computer Science, University of Massachusetts.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BooksRun, Philadelphia, PA, USA
Hardcover. Zustand: Fair. First Edition. The item might be beaten up but readable. May contain markings or highlighting, as well as stains, bent corners, or any other major defect, but the text is not obscured in any way. Bestandsnummer des Verkäufers 0262193981-7-1
Anzahl: 1 verfügbar
Anbieter: BooksRun, Philadelphia, PA, USA
Hardcover. Zustand: Good. First Edition. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Bestandsnummer des Verkäufers 0262193981-11-1
Anzahl: 1 verfügbar
Anbieter: Books From California, Simi Valley, CA, USA
hardcover. Zustand: Good. Bestandsnummer des Verkäufers mon0003921014
Anzahl: 1 verfügbar
Anbieter: HPB-Red, Dallas, TX, USA
Hardcover. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_453245387
Anzahl: 1 verfügbar
Anbieter: 3Brothers Bookstore, Egg harbor township, NJ, USA
Zustand: good. Books may contain some notes and highlighting. Supplements such as Access Codes, Cd's Dust Jackets, etc. are not guaranteed with used book purchases. Bestandsnummer des Verkäufers EVV.0262193981.G
Anzahl: 1 verfügbar
Anbieter: Half Price Books Inc., Dallas, TX, USA
hardcover. Zustand: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_457084918
Anzahl: 1 verfügbar
Anbieter: Sekkes Consultants, North Dighton, MA, USA
Hardcover. Zustand: Near fine. Zustand des Schutzumschlags: Near fine. One of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. InReinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. The only necessary mathematical background is familiarity with elementary concepts of probability. Owner Signature on ffep, fine otherwise. 7¼" - 9¼". Book. Bestandsnummer des Verkäufers 278286
Anzahl: 1 verfügbar
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. Dust jacket in fair condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,900grams, ISBN:9780262193986. Bestandsnummer des Verkäufers 4315703
Anzahl: 1 verfügbar
Anbieter: ReviBlio, Barcelona, B, Spanien
Condition: 15 pages with some highlighted text, the rest excellent. The book provides a clear and simple account of the key ideas and algorithms in this area of artificial intelligence, where an agent learns to maximize a cumulative reward by interacting with a complex, uncertain environment. It covers the history of the field's intellectual foundations and proceeds to the core algorithms and concepts, including: The Reinforcement Learning Problem framed in terms of Markov Decision Processes (MDPs). Basic Solution Methods like Dynamic Programming, Monte Carlo methods, and the influential Temporal-Difference (TD) learning (e.g., Q-learning and SARSA). Function Approximation for handling large state spaces, including the use of artificial neural networks. More advanced topics like policy-gradient methods and a discussion of RL's relationships to psychology and neuroscience. Often referred to as the "bible" of the field, it is a foundational text suitable for students, researchers, and practitioners with a basic understanding of probability. Bestandsnummer des Verkäufers ABE-1760107744142
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Gut. Zustand: Gut | Seiten: 344 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Bestandsnummer des Verkäufers 1509267/203
Anzahl: 4 verfügbar