Crystallographic texture or preferred orientation has long been known to strongly influence material properties. Historically, the means of obtaining such texture data has been though the use of x-ray or neutron diffraction for bulk texture measurements, or transmission electron microscopy or electron channeling for local crystallographic information. In recent years, we have seen the emergence of a new characterization technique for probing the microtexture of materials. This advance has come about primarily through the automated indexing of electron backscatter diffraction (EBSD) patterns. The first commercially available system was introduced in 1994, and since then of sales worldwide has been dramatic. This has accompanied widening the growth applicability in materials scienceproblems such as microtexture, phase identification, grain boundary character distribution, deformation microstructures, etc. and is evidence that this technique can, in some cases, replace more time-consuming transmission electron microscope (TEM) or x-ray diffraction investigations. The benefits lie in the fact that the spatial resolution on new field emission scanning electron microscopes (SEM) can approach 50 nm, but spatial extent can be as large a centimeter or greater with a computer controlled stage and montagingofthe images. Additional benefits include the relative ease and low costofattaching EBSD hardware to new or existing SEMs. Electron backscatter diffraction is also known as backscatter Kikuchi diffraction (BKD), or electron backscatter pattern technique (EBSP). Commercial names for the automation include Orientation Imaging Microscopy (OIM™) and Automated Crystal Orientation Mapping (ACOM).
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Electron backscatter diffraction (EBSD), when employed as an additional characterization technique to a scanning electron microscope (SEM), enables individual grain orientations, local texture, point-to-point orientation correlations, and phase identification and distributions to be determined routinely on the surfaces of bulk polycrystalline materials. The application has experienced rapid acceptance in metallurgical, materials, and geophysical laboratories within the past decade due to the wide availability of SEMs, the ease of sample preparation from the bulk, the high speed of data acquisition, and the access to complimentary information about the microstructure on a submicron scale.
This entirely new second edition describes the complete EBSD technique, from the experimental set-up, representations of textures, and dynamical simulation, to energy-filtered, spherical, and 3-D EBSD, to phase identification, in situ experiments, strain mapping, and grain boundary networks, to the design and modeling of materials microstructures. Numerous application examples including the analysis of deformation microstructure, dynamic deformation and damage, and EBSD studies in the earth sciences provide details of this powerful materials characterization technique.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Hardcover. Zustand: New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Bestandsnummer des Verkäufers ERICA829030646487X6
Anzahl: 1 verfügbar