Deep Learning on Edge Computing Devices: Design Challenges of Algorithm and Architecture focuses on hardware architecture and embedded deep learning, including neural networks. The title helps researchers maximize the performance of Edge-deep learning models for mobile computing and other applications by presenting neural network algorithms and hardware design optimization approaches for Edge-deep learning. Applications are introduced in each section, and a comprehensive example, smart surveillance cameras, is presented at the end of the book, integrating innovation in both algorithm and hardware architecture. Structured into three parts, the book covers core concepts, theories and algorithms and architecture optimization.
This book provides a solution for researchers looking to maximize the performance of deep learning models on Edge-computing devices through algorithm-hardware co-design.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Xichuan Zhou is Professor and Vice Dean in the School of Microelectronics and Communication Engineering, at Chongqing University, China. He received his PhD from Zhejiang University. His research focuses on embedded neural computing, brain-like sensing, and pervasive computing. He has won professional awards for his work, and has published over 50 papers.
Research Assistant, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China. He received his B.Eng, M.Eng and Ph.D degree from University of Electronic Science and Technology of China in 2011, 2014 and 2019, and has been a visiting scholar of Kyoto University from 2018 to 2019. His main research interests include manifold learning, metric learning, deep learning, subspace clustering and sparse representation in computer vision and machine learning, with focuses on human action detection and recognition, face detection and recognition, person detection and re-identification, remote sensing image processing, and medical image analysis.
Cong Shi is a Research Professor in the School of Microelectronics and Communication Engineering, at Chongqing University, China. He received his PhD from Tsinghua University and has held the position of Postdoctoral Fellow with the Schepens Eye Research Institute, at Harvard Medical School. His research focuses on AI-based visual processing system-on-chips, and algorithm hardware co-design techniques. He has published over 30 papers.
Ji Liu is the Head of the AI platform department and the director of the Seattle AI lab for Kwai Inc. He has previously been a faculty member in computer science at the University of Rochester, USA. He received his PhD from the University of Wisconsin-Madison. His research includes machine learning, optimization, computer vision, reinforcement learning, and other areas. He has published over 100 papers.
Deep learning models deployed on Edge devices, such as mobile phones and IoT terminals, generally use Cloud computing, presenting a range of concerns around privacy, latency and power consumption. In turn, Edge computing enables inference operations, and even training progress, to be completed on embedded devices themselves, rather than in the Cloud. With on-device deep learning, reliability becomes independent of network availability or bandwidth, data processing becomes much faster, and the problems associated with the Cloud are eliminated. <i>Deep Learning on Edge Computing Devices</i><i>: Design Challenges of Algorithm and Architecture</i> focuses on hardware architecture and embedded deep learning, including neural networks. The title helps researchers maximize the performance of Edge-deep learning models for mobile computing and other applications, by presenting neural network algorithms and hardware design optimization approaches for Edge-deep learning. Applications are introduced in each section, and a comprehensive example, smart surveillance cameras, is presented at the end of the book, integrating innovation in both algorithm and hardware architecture. This book presents a summary of technology around Edge-deep learning. Structured into three parts, the first introduces core concepts; the second presents theories and algorithms; and part three details architecture optimization. This book provides a solution for researchers looking to maximize the performance of deep learning models on Edge-computing devices, through algorithm-hardware co-design.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 12,47 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 4,48 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Books From California, Simi Valley, CA, USA
paperback. Zustand: Very Good. Bestandsnummer des Verkäufers mon0003739013
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9780323857833
Anzahl: 1 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9780323857833
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Deep Learning on Edge Computing Devices: Design Challenges of Algorithm and Architecture focuses on hardware architecture and embedded deep learning, including neural networks. The title helps researchers maximize the performance of Edge-deep learning models for mobile computing and other applications by presenting neural network algorithms and hardware design optimization approaches for Edge-deep learning. Applications are introduced in each section, and a comprehensive example, smart surveillance cameras, is presented at the end of the book, integrating innovation in both algorithm and hardware architecture. Structured into three parts, the book covers core concepts, theories and algorithms and architecture optimization.This book provides a solution for researchers looking to maximize the performance of deep learning models on Edge-computing devices through algorithm-hardware co-design. 198 pp. Englisch. Bestandsnummer des Verkäufers 9780323857833
Anzahl: 2 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 44250305-n
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 390185436
Anzahl: 3 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 44250305-n
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 210 pages. 9.00x6.00x0.50 inches. In Stock. Bestandsnummer des Verkäufers __0323857833
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Deep Learning on Edge Computing Devices: Design Challenges of Algorithm and Architecture focuses on hardware architecture and embedded deep learning, including neural networks. The title helps researchers maximize the performance of Edge-deep learnin. Bestandsnummer des Verkäufers 510111725
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780323857833_new
Anzahl: Mehr als 20 verfügbar