Principles of Big Graph: In-depth Insight, Volume 128 in the Advances in Computer series, highlights new advances in the field with this new volume presenting interesting chapters on a variety of topics, including CESDAM: Centered subgraph data matrix for large graph representation, Bivariate, cluster and suitability analysis of NoSQL Solutions for big graph applications, An empirical investigation on Big Graph using deep learning, Analyzing correlation between quality and accuracy of graph clustering, geneBF: Filtering protein-coded gene graph data using bloom filter, Processing large graphs with an alternative representation, MapReduce based convolutional graph neural networks: A comprehensive review. Fast exact triangle counting in large graphs using SIMD acceleration, A comprehensive investigation on attack graphs, Qubit representation of a binary tree and its operations in quantum computation, Modified ML-KNN: Role of similarity measures and nearest neighbor configuration in multi label text classification on big social network graph data, Big graph based online learning through social networks, Community detection in large-scale real-world networks, Power rank: An interactive web page ranking algorithm, GA based energy efficient modelling of a wireless sensor network, The major challenges of big graph and their solutions: A review, and An investigation on socio-cyber crime graph.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Ripon Patgiri is an Assistant Professor at the Department of Computer Science & Engineering, National Institute of Technology Silchar, since 2013. His research interests include bloom filters, storage systems, security, and cryptography computing. He has published numerous papers in reputed journals, conferences, and books. Also, he has been awarded with several international patents. He is a senior member of IEEE. He was the General Chair of ICACNI 2018 and BigDML 2019. He is the Organizing Chair of FRSM 2020 and ADCOM 2020. Also, he is the Program Chair of CoMSO 2020, CoMSO 2021, and CoMSO 2022. He is also an editor of several multi-authored books. Moreover, he has received two research project fundings from SERB and DST, India.
Ganesh Chandra Deka is currently Deputy Director (Training) at Directorate General of Training, Ministry of Skill Development and Entrepreneurship, Government of India, New Delhi-110001, India. His research interests include e-Governance, Big Data Analytics, NoSQL Databases and Vocational Education and Training.
He has 2 books on Cloud Computing published by LAP Lambert, Germany. He is the Co-author for 4 text books on Fundamentals of Computer Science (3 books published by Moni Manik Prakashan, Guwahati, Assam, India and 1 IGI Global, USA). As of now he has edited 14 books (6 IGI Global, USA, 5 CRC Press, USA, 2 Elsevier & 1 Springer) on Big data, NoSQL and Cloud Computing and authored 10 Book Chapters.
He has published around 47 research papers in various IEEE conferences. He has organized 08 IEEE International Conferences as Technical Chair in India. He is the Member of the editorial board and reviewer for various Journals and International conferences. Member of IEEE, the Institution of Electronics and Telecommunication Engineers, India and Associate Member, the Institution of Engineers, India
Assistant Professor Anupam Biswas works in Computer Science and Engineering at the National Institute of Technology Silchar, Silchar, Assam, India.
Principles of Big Graph: In-depth Insight, Volume 128 in the Advances in Computer series, highlights new advances in the field with this new volume presenting interesting chapters on a variety of topics, including CESDAM: Centered subgraph data matrix for large graph representation, Bivariate, cluster and suitability analysis of NoSQL Solutions for big graph applications, An empirical investigation on Big Graph using deep learning, Analyzing correlation between quality and accuracy of graph clustering, geneBF: Filtering protein-coded gene graph data using bloom filter, Processing large graphs with an alternative representation, MapReduce based convolutional graph neural networks: A comprehensive review.
Fast exact triangle counting in large graphs using SIMD acceleration, A comprehensive investigation on attack graphs, Qubit representation of a binary tree and its operations in quantum computation, Modified ML-KNN: Role of similarity measures and nearest neighbor configuration in multi label text classification on big social network graph data, Big graph based online learning through social networks, Community detection in large-scale real-world networks, Power rank: An interactive web page ranking algorithm, GA based energy efficient modelling of a wireless sensor network, The major challenges of big graph and their solutions: A review, and An investigation on socio-cyber crime graph.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,11 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Principles of Big Graph: In-depth Insight, Volume 128 in the Advances in Computer series, highlights new advances in the field with this new volume presenting interesting chapters on a variety of topics, including CESDAM: Centered subgraph data matrix for large graph representation, Bivariate, cluster and suitability analysis of NoSQL Solutions for big graph applications, An empirical investigation on Big Graph using deep learning, Analyzing correlation between quality and accuracy of graph clustering, geneBF: Filtering protein-coded gene graph data using bloom filter, Processing large graphs with an alternative representation, MapReduce based convolutional graph neural networks: A comprehensive review. Fast exact triangle counting in large graphs using SIMD acceleration, A comprehensive investigation on attack graphs, Qubit representation of a binary tree and its operations in quantum computation, Modified ML-KNN: Role of similarity measures and nearest neighbor configuration in multi label text classification on big social network graph data, Big graph based online learning through social networks, Community detection in large-scale real-world networks, Power rank: An interactive web page ranking algorithm, GA based energy efficient modelling of a wireless sensor network, The major challenges of big graph and their solutions: A review, and An investigation on socio-cyber crime graph. Englisch. Bestandsnummer des Verkäufers 9780323898102
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Principles of Big Graph: In-depth Insight, Volume 128 in the Advances in Computer series, highlights new advances in the field with this new volume presenting interesting chapters on a variety of topics, including CESDAM: Centered subgraph data matrix for large graph representation, Bivariate, cluster and suitability analysis of NoSQL Solutions for big graph applications, An empirical investigation on Big Graph using deep learning, Analyzing correlation between quality and accuracy of graph clustering, geneBF: Filtering protein-coded gene graph data using bloom filter, Processing large graphs with an alternative representation, MapReduce based convolutional graph neural networks: A comprehensive review. Fast exact triangle counting in large graphs using SIMD acceleration, A comprehensive investigation on attack graphs, Qubit representation of a binary tree and its operations in quantum computation, Modified ML-KNN: Role of similarity measures and nearest neighbor configuration in multi label text classification on big social network graph data, Big graph based online learning through social networks, Community detection in large-scale real-world networks, Power rank: An interactive web page ranking algorithm, GA based energy efficient modelling of a wireless sensor network, The major challenges of big graph and their solutions: A review, and An investigation on socio-cyber crime graph. Bestandsnummer des Verkäufers 9780323898102
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 402188473
Anzahl: 3 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26395269990
Anzahl: 3 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18395269996
Anzahl: 3 verfügbar
Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien
Zustand: new. Questo è un articolo print on demand. Bestandsnummer des Verkäufers 243c74ea7b5330c920ea32e2a818b396
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 310 pages. 9.00x6.00x1.18 inches. In Stock. Bestandsnummer des Verkäufers __0323898106
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780323898102_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Principles of Big Graph: In-depth Insight, Volume 128 in the Advances in Computer series, highlights new advances in the field with this new volume presenting interesting chapters on a variety of topics, including CESDAM: Centered subgraph . Bestandsnummer des Verkäufers 736724156
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 44876255-n
Anzahl: Mehr als 20 verfügbar