Introduction to Design and Analysis of Scientific Studies exposes undergraduate and graduate students to the foundations of classical experimental design and observational studies through a modern framework - The Rubin Causal Model. A causal inference framework is important in design, data collection and analysis since it provides a framework for investigators to readily evaluate study limitations and draw appropriate conclusions. R is used to implement designs and analyse the data collected.
Features:
Instructor slides in RMarkdown, a new R package will be developed to be used with book, and a bookdown version of the book will be freely available. The proposed book will emphasize ethics, communication and decision making as part of design, data analysis, and statistical thinking.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Nathan Taback is Associate Professor of Statistics and Data Science at University of Toronto.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,18 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Nathan Taback is Associate Professor of Statistics and Data Science at University of Toronto. Classical experimental design with an emphasis on computation using tidyverse packages in R. Applications of experimental design to. Bestandsnummer des Verkäufers 521119826
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Introduction to Design and Analysis of Scientific Studies exposes undergraduate and graduate students to the foundations of classical experimental design and observational studies through a modern framework - The Rubin Causal Model. A causal inference framework is important in design, data collection and analysis since it provides a framework for investigators to readily evaluate study limitations and draw appropriate conclusions. R is used to implement designs and analyse the data collected.Features:Classical experimental design with an emphasis on computation using tidyverse packages in R.Applications of experimental design to clinical trials, A/B testing, and other modern examples.Discussion of the link between classical experimental design and causal inference.The role of randomization in experimental design and sampling in the big data era.Exercises with solutions.Instructor slides in RMarkdown, a new R package will be developed to be used with book, and a bookdown version of the book will be freely available. The proposed book will emphasize ethics, communication and decision making as part of design, data analysis, and statistical thinking. 292 pp. Englisch. Bestandsnummer des Verkäufers 9780367456856
Anzahl: 2 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. New copy - Usually dispatched within 4 working days. 185. Bestandsnummer des Verkäufers B9780367456856
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Introduction to Design and Analysis of Scientific Studies exposes undergraduate and graduate students to the foundations of classical experimental design and observational studies through a modern framework - The Rubin Causal Model. A causal inference framework is important in design, data collection and analysis since it provides a framework for investigators to readily evaluate study limitations and draw appropriate conclusions. R is used to implement designs and analyse the data collected.Features:Classical experimental design with an emphasis on computation using tidyverse packages in R.Applications of experimental design to clinical trials, A/B testing, and other modern examples.Discussion of the link between classical experimental design and causal inference.The role of randomization in experimental design and sampling in the big data era.Exercises with solutions.Instructor slides in RMarkdown, a new R package will be developed to be used with book, and a bookdown version of the book will be freely available. The proposed book will emphasize ethics, communication and decision making as part of design, data analysis, and statistical thinking. Bestandsnummer des Verkäufers 9780367456856
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 43789520
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 43789520-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 270. Bestandsnummer des Verkäufers 389501212
Anzahl: 3 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780367456856_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 43789520-n
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9780367456856
Anzahl: Mehr als 20 verfügbar