This heavily class-tested book is an exposition of the theoretical foundations of hyperbolic manifolds. It is a both a textbook and a reference. A basic knowledge of algebra and topology at the first year graduate level of an American university is assumed. The first part is concerned with hyperbolic geometry and discrete groups. The second part is devoted to the theory of hyperbolic manifolds. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. Each chapter contains exercises and a section of historical remarks. A solutions manual is available separately.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference.
The book is divided into three parts. The first part is concerned with hyperbolic geometry and discrete groups. The main results are the characterization of hyperbolic reflection groups and Euclidean crystallographic groups. The second part is devoted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the global geometry of hyperbolic manifolds of finite volume. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. The main result is Poincare«s fundamental polyhedron theorem.
The exposition if at the level of a second year graduate student with particular emphasis placed on readability and completeness of argument. After reading this book, the reader will have the necessary background to study the current research on hyperbolic manifolds.
The second edition is a thorough revision of the first edition that embodies hundreds of changes, corrections, and additions, including over sixty new lemmas, theorems, and corollaries. The new main results are Schl\¬afli's differential formula and the $n$-dimensional Gauss-Bonnet theorem.
John G. Ratcliffe is a Professor of Mathematics at Vanderbilt University.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Zoom Books East, Glendale Heights, IL, USA
Zustand: very_good. Book is in very good condition and may include minimal underlining highlighting. The book can also include "From the library of" labels. May not contain miscellaneous items toys, dvds, etc. . We offer 100% money back guarantee and 24 7 customer service. Bestandsnummer des Verkäufers ZEV.0387331972.VG
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 796 2nd Edition. Bestandsnummer des Verkäufers 26280657
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 796 170 Illus. Bestandsnummer des Verkäufers 7600014
Anzahl: 1 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-85792
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEOCT25-82402
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 796. Bestandsnummer des Verkäufers 18280667
Anzahl: 1 verfügbar
Anbieter: ALLBOOKS1, Direk, SA, Australien
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Bestandsnummer des Verkäufers SHAK82402
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2215580171938
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9780387331973
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. The reader is assumed to have a basic knowledge of algebra and topology at the first year graduate level of an American university. The first part is concerned with hyperbolic geometry and discrete groups. The second part is devoted to the theory of hyperbolic manifolds. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. The second edition contains hundreds of changes, corrections and new additions include. The exercises have been thoroughly reworked and over 100 new exercises have been added. The author has also prepared a solutions manual which is available to professors who choose to adopt this text for their course. This carefully written textbook has been heavily class-tested and each chapter contains exercises and a section of historical remarks. This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. This book has been heavily class-tested and each chapter contains exercises and a section of historical remarks. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780387331973