Unique blend of asymptotic theory and small sample practice through simulation experiments and data analysis.
Novel reproducing kernel Hilbert space methods for the analysis of smoothing splines and local polynomials. Leading to uniform error bounds and honest confidence bands for the mean function using smoothing splines
Exhaustive exposition of algorithms, including the Kalman filter, for the computation of smoothing splines of arbitrary order.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This is the second volume of a text on the theory and practice of maximum penalized likelihood estimation. It is intended for graduate students in statistics, operations research and applied mathematics, as well as for researchers and practitioners in the field. The present volume deals with nonparametric regression.
The emphasis in this volume is on smoothing splines of arbitrary order, but other estimators (kernels, local and global polynomials) pass review as well. Smoothing splines and local polynomials are studied in the context of reproducing kernel Hilbert spaces. The connection between smoothing splines and reproducing kernels is of course well-known. The new twist is that letting the innerproduct depend on the smoothing parameter opens up new possibilities. It leads to asymptotically equivalent reproducing kernel estimators (without qualifications), and thence, via uniform error bounds for kernel estimators, to uniform error bounds for smoothing splines and via strong approximations, to confidence bands for the unknown regression function.
The reason for studying smoothing splines of arbitrary order is that one wants to use them for data analysis. Regarding the actual computation, the usual scheme based on spline interpolation is useful for cubic smoothing splines only. For splines of arbitrary order, the Kalman filter is the most important method, the intricacies of which are explained in full. The authors also discuss simulation results for smoothing splines and local and global polynomials for a variety of test problems as well as results on confidence bands for the unknown regression function based on undersmoothed quintic smoothing splines with remarkably good coverage probabilities.
P.P.B. Eggermont and V.N. LaRiccia are with the Statistics Program of the Department of Food and Resource Economics in the College of Agriculture and Natural Resources at the University of Delaware, and the authors of Maximum Penalized Likelihood Estimation: Volume I: Density Estimation.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 19,49 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
Zustand: New. 592 pp., hardcover, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Bestandsnummer des Verkäufers ZB1314521
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Fully develops the theory of convex minimization problems to obtain convergence ratesIncludes simulation studies and analyses of classical data sets using fully automatic (data driven) proceduresMany topics appear for the first time in text. Bestandsnummer des Verkäufers 5910291
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780387402673_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BennettBooksLtd, North Las Vegas, NV, USA
hardcover. Zustand: New. In shrink wrap. Looks like an interesting title! Bestandsnummer des Verkäufers Q-0387402675
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2215580172273
Anzahl: Mehr als 20 verfügbar