This is a brand new edition of an essential work on Bayesian networks and decision graphs. It is an introduction to probabilistic graphical models including Bayesian networks and influence diagrams. The reader is guided through the two types of frameworks with examples and exercises, which also give instruction on how to build these models. Structured in two parts, the first section focuses on probabilistic graphical models, while the second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision process and partially ordered decision problems.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Probabilistic graphical models and decision graphs are powerful modeling tools for reasoning and decision making under uncertainty. As modeling languages they allow a natural specification of problem domains with inherent uncertainty, and from a computational perspective they support efficient algorithms for automatic construction and query answering. This includes belief updating, finding the most probable explanation for the observed evidence, detecting conflicts in the evidence entered into the network, determining optimal strategies, analyzing for relevance, and performing sensitivity analysis.
The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams. The reader is introduced to the two types of frameworks through examples and exercises, which also instruct the reader on how to build these models.
The book is a new edition of Bayesian Networks and Decision Graphs by Finn V. Jensen. The new edition is structured into two parts. The first part focuses on probabilistic graphical models. Compared with the previous book, the new edition also includes a thorough description of recent extensions to the Bayesian network modeling language, advances in exact and approximate belief updating algorithms, and methods for learning both the structure and the parameters of a Bayesian network. The second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision processes and partially ordered decision problems. The authors also
The book is intended as a textbook, but it can also be used for self-study and as a reference book.
Finn V. Jensen is a professor at the department of computer science at Aalborg University, Denmark.
Thomas D. Nielsen is an associate professor at the same department.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 34,62 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: The Book Escape, Baltimore, MD, USA
Hardcover. Zustand: Good. 2nd Edition. Light pencil underlining in a few sections of text. Could be erased if one desired. ***Shipped within 24 hours from the beautiful Baltimore inner harbor area. First class service; accurate descriptions. Most items packed in boxes, not envelopes.***. Book. Bestandsnummer des Verkäufers 000263
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Probabilistic graphical models and decision graphs are powerful modeling tools for reasoning and decision making under uncertainty. As modeling languages they allow a natural specification of problem domains with inherent uncertainty, and from a computational perspective they support efficient algorithms for automatic construction and query answering. This includes belief updating, finding the most probable explanation for the observed evidence, detecting conflicts in the evidence entered into the network, determining optimal strategies, analyzing for relevance, and performing sensitivity analysis.The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams. The reader is introduced to the two types of frameworks through examples and exercises, which also instruct the reader on how to build these models. The book is a new edition of Bayesian Networks and Decision Graphs by Finn V. Jensen. The new edition is structured into two parts. The first part focuses on probabilistic graphical models. Compared with the previous book, the new edition also includes a thorough description of recent extensions to the Bayesian network modeling language, advances in exact and approximate belief updating algorithms, and methods for learning both the structure and the parameters of a Bayesian network. The second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision processes and partially ordered decision problems. The authors also provide a well-founded practical introduction to Bayesian networks, object-oriented Bayesian networks, decision trees, influence diagrams (and variants hereof), and Markov decision processes.give practical advice on the construction of Bayesian networks, decision trees, and influence diagrams from domain knowledge.give several examples and exercises exploiting computer systems for dealing with Bayesian networks and decision graphs.present a thorough introduction to state-of-the-art solution and analysis algorithms.The book is intended as a textbook, but it can also be used for self-study and as a reference book. 447 pp. Englisch. Bestandsnummer des Verkäufers 9780387682815
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Probabilistic graphical models and decision graphs are powerful modeling tools for reasoning and decision making under uncertainty. As modeling languages they allow a natural specification of problem domains with inherent uncertainty, and from a computational perspective they support efficient algorithms for automatic construction and query answering. This includes belief updating, finding the most probable explanation for the observed evidence, detecting conflicts in the evidence entered into the network, determining optimal strategies, analyzing for relevance, and performing sensitivity analysis.The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams. The reader is introduced to the two types of frameworks through examples and exercises, which also instruct the reader on how to build these models. The book is a new edition of Bayesian Networks and Decision Graphs by Finn V. Jensen. The new edition is structured into two parts. The first part focuses on probabilistic graphical models. Compared with the previous book, the new edition also includes a thorough description of recent extensions to the Bayesian network modeling language, advances in exact and approximate belief updating algorithms, and methods for learning both the structure and the parameters of a Bayesian network. The second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision processes and partially ordered decision problems. The authors also provide a well-founded practical introduction to Bayesian networks, object-oriented Bayesian networks, decision trees, influence diagrams (and variants hereof), and Markov decision processes.give practical advice on the construction of Bayesian networks, decision trees, and influence diagrams from domain knowledge.give several examples and exercises exploiting computer systems for dealing with Bayesian networks and decision graphs.present a thorough introduction to state-of-the-art solution and analysis algorithms.The book is intended as a textbook, but it can also be used for self-study and as a reference book. Bestandsnummer des Verkäufers 9780387682815
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780387682815_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Gives a well-founded practical introduction to Bayesian networksIncludes presentation of the most efficient algorithm for solving influence diagramsThis is a brand new edition of an essential work on Bayesian networks and decision graph. Bestandsnummer des Verkäufers 5910473
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 5089893-n
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9780387682815
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 5089893-n
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 792. Bestandsnummer des Verkäufers C9780387682815
Anzahl: Mehr als 20 verfügbar
Anbieter: BennettBooksLtd, North Las Vegas, NV, USA
hardcover. Zustand: New. In shrink wrap. Looks like an interesting title! Bestandsnummer des Verkäufers Q-0387682813
Anzahl: 1 verfügbar