The primary objective of this essential text is to emphasize the deep relations existing between the semiring and dioïd structures with graphs and their combinatorial properties. It does so at the same time as demonstrating the modeling and problem-solving flexibility of these structures. In addition the book provides an extensive overview of the mathematical properties employed by "nonclassical" algebraic structures which either extend usual algebra or form a new branch of it.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The origins of Graph Theory date back to Euler (1736) with the solution of the celebrated 'Koenigsberg Bridges Problem'; and to Hamilton with the famous 'Trip around the World' game (1859), stating for the first time a problem which, in its most recent version – the 'Traveling Salesman Problem' -, is still the subject of active research. Yet, it has been during the last fifty years or so—with the rise of the electronic computers—that Graph theory has become an indispensable discipline in terms of the number and importance of its applications across the Applied Sciences. Graph theory has been especially central to Theoretical and Algorithmic Computer Science, and Automatic Control, Systems Optimization, Economy and Operations Research, Data Analysis in the Engineering Sciences. Close connections between graphs and algebraic structures have been widely used in the analysis and implementation of efficient algorithms for many problems, for example: transportation network optimization, telecommunication network optimization and planning, optimization in scheduling and production systems, etc.
The primary objectives of GRAPHS, DIOÏDS AND SEMIRINGS: New Models and Algorithms are to emphasize the deep relations existing between the semiring and dioïd structures with graphs and their combinatorial properties, while demonstrating the modeling and problem-solving capability and flexibility of these structures. In addition the book provides an extensive overview of the mathematical properties employed by "nonclassical" algebraic structures, which either extend usual algebra (i.e., semirings), or correspond to a new branch of algebra (i.e., dioïds), apart from the classical structures of groups, rings, and fields.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 59,99 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerEUR 3,41 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Antiquariat Jochen Mohr -Books and Mohr-, Oberthal, Deutschland
hardcover. Zustand: Sehr gut. Auflage: 2008. 408 Seiten 9780387754499 Wir verkaufen nur, was wir auch selbst lesen würden. Sprache: Deutsch Gewicht in Gramm: 764. Bestandsnummer des Verkäufers 89070
Anzahl: 1 verfügbar
Anbieter: SpringBooks, Berlin, Deutschland
Hardcover. Zustand: As New. Unread, like new. Immediately dispatched from Germany. Bestandsnummer des Verkäufers CEA-2408C-BETT-05-1000
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2215580172986
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 5407091-n
Anzahl: 15 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780387754499_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Hardcover. Zustand: new. Hardcover. The primary objective of this essential text is to emphasize the deep relations existing between the semiring and dioid structures with graphs and their combinatorial properties. It does so at the same time as demonstrating the modeling and problem-solving flexibility of these structures. In addition the book provides an extensive overview of the mathematical properties employed by "nonclassical" algebraic structures which either extend usual algebra or form a new branch of it. Emphasizes the deep relations existing between the semiring and dioid structures with graphs and their combinatorial properties. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780387754499
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Bestandsnummer des Verkäufers 5910953
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The origins of Graph Theory date back to Euler (1736) with the solution of the celebrated 'Koenigsberg Bridges Problem'; and to Hamilton with the famous 'Trip around the World' game (1859), stating for the first time a problem which, in its most recent version - the 'Traveling Salesman Problem' -, is still the subject of active research. Yet, it has been during the last fifty years or so-with the rise of the electronic computers-that Graph theory has become an indispensable discipline in terms of the number and importance of its applications across the Applied Sciences. Graph theory has been especially central to Theoretical and Algorithmic Computer Science, and Automatic Control, Systems Optimization, Economy and Operations Research, Data Analysis in the Engineering Sciences. Close connections between graphs and algebraic structures have been widely used in the analysis and implementation of efficient algorithms for many problems, for example: transportation network optimization, telecommunication network optimization and planning, optimization in scheduling and production systems, etc.The primary objectives of GRAPHS, DIOÏDS AND SEMIRINGS: New Models and Algorithms are to emphasize the deep relations existing between the semiring and dioïd structures with graphs and their combinatorial properties, while demonstrating the modeling and problem-solving capability and flexibility of these structures. In addition the book provides an extensive overview of the mathematical properties employed by 'nonclassical' algebraic structures, which either extend usual algebra (i.e., semirings), or correspond to a new branch of algebra (i.e., dioïds), apart from the classical structures of groups, rings, and fields. 404 pp. Englisch. Bestandsnummer des Verkäufers 9780387754499
Anzahl: 2 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Hardcover. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA75803877544905
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 5407091
Anzahl: 15 verfügbar