Book by Edwards R E
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: HPB Inc., Dallas, TX, USA
paperback. Zustand: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_414865265
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9780387905136
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2215580173755
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780387905136_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9780387905136
Anzahl: 10 verfügbar
Anbieter: Midway Book Store (ABAA), St. Paul, MN, USA
Paperback. Zustand: Near Fine. Two volume set. 23.5 x 15.5 cm. xlvi 606pp, 607- 1170pp. Parts 2a and 2b only. Yellow softcovers. Toning to spines. 2a contains chapters for Hidden hypotheses, infinite limits, subsequences, The monotone Convergence principle, exponential and logarithmic functions, General principle of Convergence, Continuity and limits of functions, Convergence of series, Differentiation, Integration, complex numbers, approximate integration, differential coefficients, lengths of curves. 2b contains chapters on Line integrals, Segmental and triangular paths, Convex sets, Standard subdivision of triangular paths, Cauchy's theorem, Cauchy's integral formula, Logarithmic functions, Complex analysis, notations, problems and solutions. Universitext. Bestandsnummer des Verkäufers 79339
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -VII: Convergence of Sequences.- Hidden hypotheses.- VII.1 Sequences convergent inR.- VII.1.1 Definition of convergence to zero.- VII.1.2 Remarks.- VII.1.3 Definition of convergence in R.- VII.1.4 Remarks.- VII.1.5 Lemma.- VII.1.6 Theorem.- VII.1.7 Theorem.- VII.1.8 Theorem.- VII.1.9 Problems.- VII.1.10 Theorem.- VII.1.11 Theorem.- VII.1.12 Examples.- VII.1.13 More about converses.- VII.2 Infinite limits.- VII.2.1 The symbols - , - ; the extended real line.- VII.2.2 Definition of convergence to or to - .- VII.2.3 Theorem.- VII.2.4 Remarks.- VII.2.5 Example.- VII.2.6 Problems.- VII.3 Subsequences.- VII.3.1 Definition of subsequences.- VII.3.2 Theorem.- VII.3.3 Theorem.- VII.3.4 Examples.- VII.3.5 Lemma.- VII.3.6 Remark.- VII.4 The Monotone Convergence Principle again.- VII.4.1 The MCP.- VII.4.2 Example: the compound interest sequence.- VII.4.3 Preliminaries concering the number e.- VII.4.4 Problems.- VII.4.5 Theorem (Weierstrass-Bolzano).- VII.4.6 Kronecker¿s Theorem.- VII.5 Suprema and infima of sets of real numbers.- VII.5.1 Suprema.- VII.5.2 Infima.- VII.5.3 Example.- VII.5.4 Problems.- VII.5.5 Concerning formalities.- VII.5.6 Concerning notation and terminology.- VII.6 Exponential and logarithmic functions.- VII.6.1 Definition of exp.- VII.6.2 Theorem.- VII.6.3 Theorem.- VII.6.4 Remarks.- VII.6.5 Theorem.- VII.6.6 Theorem.- VII.6.7 An alternative approach.- VII.6.8 Concerning formalities.- VII.7 The General Principle of Convergence.- VII.7.1 Definition.- VII.7.2 The GCP.- VII.7.3 Discussion of convergence principles.- VII.7.4 Remarks concerning Cantor¿s construction of R.- VII.7.5 Concerning existential proofs.- VIII: Continuity and Limits of Functions.- and hidden hypotheses.- VIII.1 Continuous functions.- VIII.1.1 Definition of continuous functions.- VIII.1.2 Examples.- VIII.1.3 Theorem.- VIII.1.4 Problems.- VIII.2 Properties of continuous functions.- VIII.2.1 Theorem (Intermediate Value Theorem).- VIII.2.2 Comments on the preceding proof.- VIII.2.3 Corollary.- VIII.2.4 A geometrical illustration.- VIII.2.5 Theorem.- VIII.2.6 Problems.- VIII.2.7 Theorem.- VIII.2.8 Corollary.- VIII.2.9 Remark.- VIII.2.10 Problem.- VIII.2.11 Remark.- VIII.2.12 Problems.- VIII.3 General exponential, logarithmic and power functions.- VIII.3.1 Real powers of positive numbers.- VIII.3.2 The exponential and logarithmic functions with base a.- VIII.3.3 Power functions.- VIII.3.4 Problems.- VIII.4 Limit of a function at a point.- VIII.4.1 Preliminary definitions.- VIII.4.2 The full and punctured limits of a function at a point.- VIII.4.3 Theorem.- VIII.4.4 Some formalities and further discussion.- VIII.4.5 Theorem.- VIII.4.6 Limits of composite functions.- VIII.4.7 Other species of limits; one sided limits.- VIII.4.8 Problems.- VIII.5 Uniform continuity.- VIII.5.1 Preliminary discussion.- VIII.5.2 Definition.- VIII.5.3 Theorem.- VIII.5.4 Problems.- VIII.5.5 Remarks.- VIII.6 Convergence of sequences of functions.- VIII.6.1 Definition of pointwise convergence.- VIII.6.2 Examples.- VIII.6.3 Further discussion.- VIII.6.4 Definition of uniform convergence.- VIII.6.5 Theorem.- VIII.6.6 Examples.- VIII.6.7 Theorem.- VIII.6.8 Theorem.- VIII.6.9 Discussion of some formalities.- VIII.7 Polynomial approximation.- VIII.7.1 Preliminaries.- VIII.7.2 Theorem (Weierstrass).- VIII.7.3 Theorem (Bernstein).- VIII.7.4 Remarks.- VIII.8 Another approach to expa.- Preliminaries.- VIII.8.1 Existence of a solution.- VIII.8.2 Uniqueness of the solution.- VIII.8.3 Summary.- IX: Convergence of Series.- and hidden hypotheses.- IX.1 Series and their convergence.- IX.1.1 Definitions.- IX.1.2 Example.- IX.1.3 Theorem.- IX.1.4 Theorem.- IX.1.5 Theorem.- IX.1.6 Theorem.- IX.1.7 Examples.- IX.2 Absolute and conditional convergence.- IX.2.1 Definition of absolute and conditional convergence.- IX.2.2 Theorem.- IX.2.3 Theorem (General Comparison Test).- IX.2.4 Problems.- IX.2.5 Theorem (d¿Alembert¿s Ratio Test).- IX.2.6 Theorem (Cauchy n-th Root Test).- IX.2.7 Theorem (Leibnitz¿ Test).- IX.2.8 Problem.- IX.2.9 Theorem.- IX.2.10 Problems.- IX.2.11 General remarks.- IX.3 Decimal expansions.- IX.3.1 Lemma.- IX.3.2 Lemma.- IX.3.3 Corollary.- IX.3.4 Example.- IX.3.5 Liouville numbers.- IX.4 Convergence of series of functions.- IX.4.1 Theorem.- IX.4.2 Problems.- IX.4.3 Theorem.- IX.4.4 Remark.- IX.4.5 Concluding remarks.- X: Differentiation.- and hidden hypotheses.- X.1 Derivatives.- X.1.1 Definition of derivative.- X.1.2 The derivative function.- X.1.3 Comments on the definition of derivative.- X.1.4 Equivalent formulations of X.1.1.- X.1.5 Differentiability and continuity.- X.1.6 Local nature of differentiability.- X.1.7 Derivative of jn when $$n in dot Nx$$.- X.1.8 Derivative of a constant function.- X.2 Rules for differentiation.- X.2.1 Theorem.- X.2.2 Theorem (The chain rule).- X.2.3 Theorem.- X.2.4 Derivative of jr when r is rational.- X.2.5 Derivatives of exponential, logarithmic and general power functions.- X.2.6 Implicit algebraic functions.- X.2.7 Cauchy¿s ¿singular function¿.- X.2.8 Continuous nowhere differentiable functions.- X.2.9 Concerning routine exercises.- X.3 The mean value theorem and its corollaries.- X.3.1 Mean value theorem.- X.3.2 Remarks.- X.3.3 Corollary.- X.3.4 Remarks.- X.3.5 Relations with monotonicity.- X.4 Primitives.- X.4.1 Difference of two primitives.- X.4.2 The existence problem for primitives.- X.4.3 Functions with no primitive.- X.4.4 Darboux continuity.- X.5 Higher order derivatives.- X.6 Extrema and derivatives.- X.6.1 Extremum points.- X.6.2 Local extrema.- X.6.3 Theorem.- X.6.4 Theorem.- X.6.5 Theorem.- X.6.6 Remarks.- X.6.7 Global extrema.- X.6.8 Global Extrema (continued).- X.6.9 The case of rational functions.- X.6.10 Some examples.- X.7 A differential equation and the exponential function again.- X.7.1 A conventional approach.- X.7.2 Remarks.- X.7.3 Preferred approach.- X.7.4 The exponential function refounded.- X.7.5 Proof of (10) in X.7. Bestandsnummer des Verkäufers 9780387905136
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 660. Bestandsnummer des Verkäufers 263890815
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 943. Bestandsnummer des Verkäufers C9780387905136
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. VII: Convergence of Sequences.- Hidden hypotheses.- VII.1 Sequences convergent inR.- VII.1.1 Definition of convergence to zero.- VII.1.2 Remarks.- VII.1.3 Definition of convergence in R.- VII.1.4 Remarks.- VII.1.5 Lemma.- VII.1.6 Theorem.- VII.1.7 Theorem.-. Bestandsnummer des Verkäufers 5911689
Anzahl: Mehr als 20 verfügbar