Arch Models and Financial Applications (Springer Series in Statistics) - Hardcover

Buch 35 von 160: Springer Series in Statistics

Gourieroux, C.; Gouriéroux, Christian

 
9780387948768: Arch Models and Financial Applications (Springer Series in Statistics)

Inhaltsangabe

1.1 The DevelopmentofARCH Models Time series models have been initially introduced either for descriptive purposes like prediction and seasonal correction or for dynamic control. In the 1970s, the researchfocusedonaspecificclassoftimeseriesmodels,theso-calledautoregres­ sive moving average processes (ARMA), which were very easy to implement. In thesemodels,thecurrentvalueoftheseriesofinterestiswrittenasalinearfunction ofits own laggedvalues andcurrentandpastvaluesofsomenoiseprocess, which can be interpreted as innovations to the system. However, this approach has two major drawbacks: 1) it is essentially a linear setup, which automatically restricts the type of dynamics to be approximated; 2) it is generally applied without im­ posing a priori constraintson the autoregressive and moving average parameters, which is inadequatefor structural interpretations. Among the field ofapplications where standard ARMA fit is poorare financial and monetary problems. The financial time series features various forms ofnon­ lineardynamics,the crucialone being the strongdependenceofthe instantaneous variabilityoftheseriesonitsownpast. Moreover,financial theoriesbasedoncon­ ceptslikeequilibriumorrationalbehavioroftheinvestorswouldnaturallysuggest including and testing some structural constraints on the parameters. In this con­ text, ARCH (Autoregressive Conditionally Heteroscedastic) models, introduced by Engle (1982), arise as an appropriate framework for studying these problems. Currently, there existmorethan onehundredpapers and some dozenPh.D. theses on this topic, which reflects the importance ofthis approach for statistical theory, finance and empirical work. 2 1. Introduction From the viewpoint ofstatistical theory, the ARCH models may be considered as some specific nonlinear time series models, which allow for aquite exhaustive studyoftheunderlyingdynamics.Itisthereforepossibletoreexamineanumberof classicalquestions like the random walkhypothesis, prediction intervals building, presenceoflatentvariables [factors] etc., and to test the validity ofthe previously established results.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Críticas

From the reviews:

RISKBOOK.COM

"Gourieroux offers a nice balance of theory and application in this book on ARCH modeling in finance...The book is well written and has extensive references. Its focus on finance will appeal to financial engineers and financial risk managers."

Reseña del editor

1.1 The DevelopmentofARCH Models Time series models have been initially introduced either for descriptive purposes like prediction and seasonal correction or for dynamic control. In the 1970s, the researchfocusedonaspecificclassoftimeseriesmodels,theso-calledautoregres­ sive moving average processes (ARMA), which were very easy to implement. In thesemodels,thecurrentvalueoftheseriesofinterestiswrittenasalinearfunction ofits own laggedvalues andcurrentandpastvaluesofsomenoiseprocess, which can be interpreted as innovations to the system. However, this approach has two major drawbacks: 1) it is essentially a linear setup, which automatically restricts the type of dynamics to be approximated; 2) it is generally applied without im­ posing a priori constraintson the autoregressive and moving average parameters, which is inadequatefor structural interpretations. Among the field ofapplications where standard ARMA fit is poorare financial and monetary problems. The financial time series features various forms ofnon­ lineardynamics,the crucialone being the strongdependenceofthe instantaneous variabilityoftheseriesonitsownpast. Moreover,financial theoriesbasedoncon­ ceptslikeequilibriumorrationalbehavioroftheinvestorswouldnaturallysuggest including and testing some structural constraints on the parameters. In this con­ text, ARCH (Autoregressive Conditionally Heteroscedastic) models, introduced by Engle (1982), arise as an appropriate framework for studying these problems. Currently, there existmorethan onehundredpapers and some dozenPh.D. theses on this topic, which reflects the importance ofthis approach for statistical theory, finance and empirical work. 2 1. Introduction From the viewpoint ofstatistical theory, the ARCH models may be considered as some specific nonlinear time series models, which allow for aquite exhaustive studyoftheunderlyingdynamics.Itisthereforepossibletoreexamineanumberof classicalquestions like the random walkhypothesis, prediction intervals building, presenceoflatentvariables [factors] etc., and to test the validity ofthe previously established results.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9781461273141: ARCH Models and Financial Applications (Springer Series in Statistics)

Vorgestellte Ausgabe

ISBN 10:  1461273145 ISBN 13:  9781461273141
Verlag: Springer, 2012
Softcover