In this monograph the authors present detailed and pedagogic proofs of persistence theorems for normally hyperbolic invariant manifolds and their stable and unstable manifolds for classes of perturbations of the NLS equation, as well as for the existence and persistence of fibrations of these invariant manifolds. Their techniques are based on an infinite dimensional generalisation of the graph transform and can be viewed as an infinite dimensional generalisation of Fenichels results. As such, they may be applied to a broad class of infinite dimensional dynamical systems.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In this monograph the authors present detailed and pedagogic proofs of persistence theorems for normally hyperbolic invariant manifolds and their stable and unstable manifolds for classes of perturbations of the NLS equation, as well as for the existence and persistence of fibrations of these invariant manifolds. Their techniques are based on an infinite dimensional generalisation of the graph transform and can be viewed as an infinite dimensional generalisation of Fenichels results. As such, they may be applied to a broad class of infinite dimensional dynamical systems.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 188 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 538402/202
Anzahl: 2 verfügbar
Anbieter: Chiemgauer Internet Antiquariat GbR, Altenmarkt, BAY, Deutschland
Originalpappband. Zustand: Wie neu. First edition. VIII, 170 S. : graph. Darst. ; 24 cm In EXCELLENT shape. We offer a lot of books on PHYSICS and MATHEMATICS on stock in EXCELLENT shape). Sprache: Englisch Gewicht in Gramm: 505. Bestandsnummer des Verkäufers 307446
Anzahl: 1 verfügbar
Anbieter: The Book Bin, Salem, OR, USA
Hardcover. Zustand: As New. Like New, light shelf wear. Bestandsnummer des Verkäufers CORV-BBC-0K02215
Anzahl: 1 verfügbar
Anbieter: Bingo Books 2, Vancouver, WA, USA
Hardcover. Zustand: Fine. 1st Edition. HRDBACK BOOK IN FINE CONDITION. Bestandsnummer des Verkäufers 129059
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. - Presents detailed and pedagogic proofs - The authors techniques can be applied to a broad class of infinite dimensional dynamical systems - Stephen Wiggins has authored many successful Springer titles and is the editor of Springers Journal of Nonlinear Sc. Bestandsnummer des Verkäufers 5912256
Anzahl: Mehr als 20 verfügbar
Anbieter: J. HOOD, BOOKSELLERS, ABAA/ILAB, Baldwin City, KS, USA
Hardcover. 170pp. As new, clean, tight & bright condition without dust jacket as published. Bestandsnummer des Verkäufers 199481
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book presents a development of invariant manifold theory for a spe cific canonical nonlinear wave system -the perturbed nonlinear Schrooinger equation. The main results fall into two parts. The first part is concerned with the persistence and smoothness of locally invariant manifolds. The sec ond part is concerned with fibrations of the stable and unstable manifolds of inflowing and overflowing invariant manifolds. The central technique for proving these results is Hadamard's graph transform method generalized to an infinite-dimensional setting. However, our setting is somewhat different than other approaches to infinite dimensional invariant manifolds since for conservative wave equations many of the interesting invariant manifolds are infinite dimensional and noncom pact. The style of the book is that of providing very detailed proofs of theorems for a specific infinite dimensional dynamical system-the perturbed nonlinear Schrodinger equation. The book is organized as follows. Chapter one gives an introduction which surveys the state of the art of invariant manifold theory for infinite dimensional dynamical systems. Chapter two develops the general setup for the perturbed nonlinear Schrodinger equation. Chapter three gives the proofs of the main results on persistence and smoothness of invariant man ifolds. Chapter four gives the proofs of the main results on persistence and smoothness of fibrations of invariant manifolds. This book is an outgrowth of our work over the past nine years concerning homoclinic chaos in the perturbed nonlinear Schrodinger equation. The theorems in this book provide key building blocks for much of that work.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 188 pp. Englisch. Bestandsnummer des Verkäufers 9780387949253
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The nonlinear Schroedinger (NLS) equation is a fundamental nonlinear partial differential equation (PDE) that arises in many areas and engineering, e.g. in plasma physics, nonlinear waves, and nonlinear optics. It is an example of a completely integrable PDE where phase space structure is known in some detail. In this monograph the authors present detailed and pedagogic proofs of persistence theorems for normally hyperbolic invariant manifolds and their stable and unstable manifolds for classes of perturbations of the NLS equation. The existence and persistence of fibrations of these invariant manifolds is also proved. The authors' techniques are based on an infinite dimensional generalization of the graph transform and can be viewed as an infinite dimensional generalization of Fenichel's results. This book also shows that the authors' techniques are quite general and can be applied to a broad class of infinite dimensional dynamical systems. 188 pp. Englisch. Bestandsnummer des Verkäufers 9780387949253
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a development of invariant manifold theory for a spe cific canonical nonlinear wave system -the perturbed nonlinear Schrooinger equation. The main results fall into two parts. The first part is concerned with the persistence and smoothness of locally invariant manifolds. The sec ond part is concerned with fibrations of the stable and unstable manifolds of inflowing and overflowing invariant manifolds. The central technique for proving these results is Hadamard's graph transform method generalized to an infinite-dimensional setting. However, our setting is somewhat different than other approaches to infinite dimensional invariant manifolds since for conservative wave equations many of the interesting invariant manifolds are infinite dimensional and noncom pact. The style of the book is that of providing very detailed proofs of theorems for a specific infinite dimensional dynamical system-the perturbed nonlinear Schrodinger equation. The book is organized as follows. Chapter one gives an introduction which surveys the state of the art of invariant manifold theory for infinite dimensional dynamical systems. Chapter two develops the general setup for the perturbed nonlinear Schrodinger equation. Chapter three gives the proofs of the main results on persistence and smoothness of invariant man ifolds. Chapter four gives the proofs of the main results on persistence and smoothness of fibrations of invariant manifolds. This book is an outgrowth of our work over the past nine years concerning homoclinic chaos in the perturbed nonlinear Schrodinger equation. The theorems in this book provide key building blocks for much of that work. Bestandsnummer des Verkäufers 9780387949253
Anzahl: 1 verfügbar
Anbieter: Sutton Books, Norwich, VT, USA
Hardcover. Zustand: Fine. Hbk 170pp no dj as issued laminated boards prev owner's inscrn on fep otherwise excellent clean tight unmarked as new. Bestandsnummer des Verkäufers HPS215-B
Anzahl: 1 verfügbar