This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development, beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development, beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 13,65 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Better World Books: West, Reno, NV, USA
Zustand: Good. Used book that is in clean, average condition without any missing pages. Bestandsnummer des Verkäufers 51665446-75
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This introduction to algebraic number theory via the famous problem of Fermats Last Theorem follows its historical development, beginning with the work of Fermat and ending with Kummers theory of ideal factorization. The more elementary topics, such as . Bestandsnummer des Verkäufers 5912284
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is an introduction to algebraic number theory via the famous problem of 'Fermat's Last Theorem.' The exposition follows the historical development of the problem, beginning with the work of Fermat and ending with Kummer's theory of 'ideal' factorization, by means of which the theorem is proved for all prime exponents less than 37. The more elementary topics, such as Euler's proof of the impossibilty of x+y=z, are treated in an elementary way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummer's ideal theory to quadratic integers and relates this theory to Gauss' theory of binary quadratic forms, an interesting and important connection that is not explored in any other book. 432 pp. Englisch. Bestandsnummer des Verkäufers 9780387950020
Anzahl: 2 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book is an introduction to algebraic number theory via the famous problem of 'Fermat's Last Theorem.' The exposition follows the historical development of the problem, beginning with the work of Fermat and ending with Kummer's theory of 'ideal' factorization, by means of which the theorem is proved for all prime exponents less than 37. The more elementary topics, such as Euler's proof of the impossibilty of x+y=z, are treated in an elementary way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummer's ideal theory to quadratic integers and relates this theory to Gauss' theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 432 pp. Englisch. Bestandsnummer des Verkäufers 9780387950020
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is an introduction to algebraic number theory via the famous problem of 'Fermat's Last Theorem.' The exposition follows the historical development of the problem, beginning with the work of Fermat and ending with Kummer's theory of 'ideal' factorization, by means of which the theorem is proved for all prime exponents less than 37. The more elementary topics, such as Euler's proof of the impossibilty of x+y=z, are treated in an elementary way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummer's ideal theory to quadratic integers and relates this theory to Gauss' theory of binary quadratic forms, an interesting and important connection that is not explored in any other book. Bestandsnummer des Verkäufers 9780387950020
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780387950020_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 671902-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Moe's Books, Berkeley, CA, USA
Soft cover. Zustand: Very good. No jacket. Good, clean condition. Bestandsnummer des Verkäufers 1121943
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 671902-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 432. Bestandsnummer des Verkäufers 18287086
Anzahl: 4 verfügbar