This book presents a method of establishing explicit solutions to classical problems of calculating the best lower and upper mean-variance bounds. The following families of distributions are taken into account: arbitrary, symmetric, symmetric unimodal, and U-shaped. The book is addressed to students, researchers, and practitioners in statistics and applied probability. Most of the results are recent, and a significant part of them has not been published yet. Numerous open problems are stated in the text.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book presents a method of establishing explicit solutions to classical problems of calculating the best lower and upper mean-variance bounds. The following families of distributions are taken into account: arbitrary, symmetric, symmetric unimodal, and U-shaped. The book is addressed to students, researchers, and practitioners in statistics and applied probability. Most of the results are recent, and a significant part of them has not been published yet. Numerous open problems are stated in the text.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,99 für den Versand von Frankreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Ammareal, Morangis, Frankreich
Softcover. Zustand: Très bon. Ancien livre de bibliothèque. Petite(s) trace(s) de pliure sur la couverture. Edition 2001. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Former library book. Slightly creased cover. Edition 2001. Ammareal gives back up to 15% of this item's net price to charity organizations. Bestandsnummer des Verkäufers E-812-905
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 192 | Sprache: Englisch | Produktart: Sonstiges. Bestandsnummer des Verkäufers 736210/202
Anzahl: 1 verfügbar
Anbieter: Munster & Company LLC, ABAA/ILAB, Corvallis, OR, USA
Paperback. Zustand: Very Good. New York, Berlin, Heidelberg: Springer-Verlag, 2001. 175 pp. 23.5 x 15.5 cm. Very light rubbing to cover; sunning to spine. Interior is clean and unmarked; binding is firm. Soft Cover. Very Good. 8vo - over 7¾" - 9¾" tall. Bestandsnummer des Verkäufers 625076
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents a method of establishing explicit solutions to classical problems of calculating the best lower and upper mean-variance bounds. The following families of distributions are taken into account: arbitrary, symmetric, symmetric unimodal, a. Bestandsnummer des Verkäufers 5912414
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -About 10 years ago I began studying evaluations of distributions of or der statistics from samples with general dependence structure. Analyzing in [78] deterministic inequalities for arbitrary linear combinations of order statistics expressed in terms of sample moments, I observed that we obtain the optimal bounds once we replace the vectors of original coefficients of the linear combinations by the respective Euclidean norm projections onto the convex cone of vectors with nondecreasing coordinates. I further veri fied that various optimal evaluations of order and record statistics, derived earlier by use of diverse techniques, may be expressed by means of projec tions. In Gajek and Rychlik [32], we formulated for the first time an idea of applying projections onto convex cones for determining accurate moment bounds on the expectations of order statistics. Also for the first time, we presented such evaluations for non parametric families of distributions dif ferent from families of arbitrary, symmetric, and nonnegative distributions. We realized that this approach makes it possible to evaluate various func tionals of great importance in applied probability and statistics in different restricted families of distributions. The purpose of this monograph is to present the method of using pro jections of elements of functional Hilbert spaces onto convex cones for es tablishing optimal mean-variance bounds of statistical functionals, and its wide range of applications. This is intended for students, researchers, and practitioners in probability, statistics, and reliability.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 192 pp. Englisch. Bestandsnummer des Verkäufers 9780387952390
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a method of establishing explicit solutions to classical problems of calculating the best lower and upper mean-variance bounds. The following families of distributions are taken into account: arbitrary, symmetric, symmetric unimodal, and U-shaped. The book is addressed to students, researchers, and practitioners in statistics and applied probability. Most of the results are recent, and a significant part of them has not been published yet. Numerous open problems are stated in the text. 192 pp. Englisch. Bestandsnummer des Verkäufers 9780387952390
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - About 10 years ago I began studying evaluations of distributions of or der statistics from samples with general dependence structure. Analyzing in [78] deterministic inequalities for arbitrary linear combinations of order statistics expressed in terms of sample moments, I observed that we obtain the optimal bounds once we replace the vectors of original coefficients of the linear combinations by the respective Euclidean norm projections onto the convex cone of vectors with nondecreasing coordinates. I further veri fied that various optimal evaluations of order and record statistics, derived earlier by use of diverse techniques, may be expressed by means of projec tions. In Gajek and Rychlik [32], we formulated for the first time an idea of applying projections onto convex cones for determining accurate moment bounds on the expectations of order statistics. Also for the first time, we presented such evaluations for non parametric families of distributions dif ferent from families of arbitrary, symmetric, and nonnegative distributions. We realized that this approach makes it possible to evaluate various func tionals of great importance in applied probability and statistics in different restricted families of distributions. The purpose of this monograph is to present the method of using pro jections of elements of functional Hilbert spaces onto convex cones for es tablishing optimal mean-variance bounds of statistical functionals, and its wide range of applications. This is intended for students, researchers, and practitioners in probability, statistics, and reliability. Bestandsnummer des Verkäufers 9780387952390
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780387952390_new
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 308. Bestandsnummer des Verkäufers C9780387952390
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 192. Bestandsnummer des Verkäufers 263893004
Anzahl: 4 verfügbar