This is the second of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self -contained and accessible to the nonspecialist. Part II concerns the theory of monotone operators. It is divided into two subvolumes, II/A and II/B, which form a unit. The present Part II/A is devoted to linear monotone operators. It serves as an elementary introduction to the modern functional analytic treatment of variational problems, integral equations, and partial differential equations of elliptic, parabolic and hyperbolic type. This book also represents an introduction to numerical functional analysis with applications to the Ritz method along with the method of finite elements, the Galerkin methods, and the difference method. Many exercises complement the text. The theory of monotone operators is closely related to Hilbert's rigorous justification of the Dirichlet principle, and to the 19th and 20th problems of Hilbert which he formulated in his famous Paris lecture in 1900, and which strongly influenced the development of analysis in the twentieth century.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This is the second of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self -contained and accessible to the nonspecialist. Part II concerns the theory of monotone operators. It is divided into two subvolumes, II/A and II/B, which form a unit. The present Part II/A is devoted to linear monotone operators. It serves as an elementary introduction to the modern functional analytic treatment of variational problems, integral equations, and partial differential equations of elliptic, parabolic and hyperbolic type. This book also represents an introduction to numerical functional analysis with applications to the Ritz method along with the method of finite elements, the Galerkin methods, and the difference method. Many exercises complement the text. The theory of monotone operators is closely related to Hilbert's rigorous justification of the Dirichlet principle, and to the 19th and 20th problems of Hilbert which he formulated in his famous Paris lecture in 1900, and which strongly influenced the development of analysis in the twentieth century.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,20 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Grey Matter Books, Hadley, MA, USA
Hardcover. Zustand: Very Good. Zustand des Schutzumschlags: None Issued. Volume II/B: Nonlinear Monotone Operators ONLY! Text is unmarked; pages are bright. Previous owner's signature in pen on the first free end page. Binding is sturdy. The corners of the covers are bumped. No dust jacket, as issued. International/Priority shipping at cost. Bestandsnummer des Verkäufers 071446
Anzahl: 1 verfügbar
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Good. Used book that is in clean, average condition without any missing pages. Bestandsnummer des Verkäufers 17006648-75
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Bestandsnummer des Verkäufers 5912934
Anzahl: Mehr als 20 verfügbar
Anbieter: BennettBooksLtd, North Las Vegas, NV, USA
library. Zustand: New. In shrink wrap. Looks like an interesting title! Bestandsnummer des Verkäufers Q-038797167X
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780387971674_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book continues the treatment of the arithmetic theory of elliptic curves begun in the first volume. The book begins with the theory of elliptic and modular functions for the full modular group r(1), including a discussion of Hekcke operators and the L-series associated to cusp forms. This is followed by a detailed study of elliptic curves with complex multiplication, their associated Grössencharacters and L-series, and applications to the construction of abelian extensions of quadratic imaginary fields. Next comes a treatment of elliptic curves over function fields and elliptic surfaces, including specialization theorems for heights and sections. This material serves as a prelude to the theory of minimal models and Néron models of elliptic curves, with a discussion of special fibers, conductors, and Ogg's formula. Next comes a brief description of q-models for elliptic curves over C and R, followed by Tate's theory of q-models for elliptic curves with non-integral j-invariant over p-adic fields. The book concludes with the construction of canonical local height functions on elliptic curves, including explicit formulas for both archimedean and non-archimedean fields. 756 pp. Englisch. Bestandsnummer des Verkäufers 9780387971674
Anzahl: 2 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book continues the treatment of the arithmetic theory of elliptic curves begun in the first volume. The book begins with the theory of elliptic and modular functions for the full modular group r(1), including a discussion of Hekcke operators and the L-series associated to cusp forms. This is followed by a detailed study of elliptic curves with complex multiplication, their associated Grössencharacters and L-series, and applications to the construction of abelian extensions of quadratic imaginary fields. Next comes a treatment of elliptic curves over function fields and elliptic surfaces, including specialization theorems for heights and sections. This material serves as a prelude to the theory of minimal models and Néron models of elliptic curves, with a discussion of special fibers, conductors, and Ogg's formula. Next comes a brief description of q-models for elliptic curves over C and R, followed by Tate's theory of q-models for elliptic curves with non-integral j-invariant over p-adic fields. The book concludes with the construction of canonical local height functions on elliptic curves, including explicit formulas for both archimedean and non-archimedean fields.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 756 pp. Englisch. Bestandsnummer des Verkäufers 9780387971674
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book continues the treatment of the arithmetic theory of elliptic curves begun in the first volume. The book begins with the theory of elliptic and modular functions for the full modular group r(1), including a discussion of Hekcke operators and the L-series associated to cusp forms. This is followed by a detailed study of elliptic curves with complex multiplication, their associated Grössencharacters and L-series, and applications to the construction of abelian extensions of quadratic imaginary fields. Next comes a treatment of elliptic curves over function fields and elliptic surfaces, including specialization theorems for heights and sections. This material serves as a prelude to the theory of minimal models and Néron models of elliptic curves, with a discussion of special fibers, conductors, and Ogg's formula. Next comes a brief description of q-models for elliptic curves over C and R, followed by Tate's theory of q-models for elliptic curves with non-integral j-invariant over p-adic fields. The book concludes with the construction of canonical local height functions on elliptic curves, including explicit formulas for both archimedean and non-archimedean fields. Bestandsnummer des Verkäufers 9780387971674
Anzahl: 1 verfügbar