This book mainly discusses the representation theory of the special linear group 8L(2, 1R), and some applications of this theory. In fact the emphasis is on the applications; the working title of the book while it was being writ ten was "Some Things You Can Do with 8L(2). " Some of the applications are outside representation theory, and some are to representation theory it self. The topics outside representation theory are mostly ones of substantial classical importance (Fourier analysis, Laplace equation, Huyghens' prin ciple, Ergodic theory), while the ones inside representation theory mostly concern themes that have been central to Harish-Chandra's development of harmonic analysis on semisimple groups (his restriction theorem, regularity theorem, character formulas, and asymptotic decay of matrix coefficients and temperedness). We hope this mix of topics appeals to nonspecialists in representation theory by illustrating (without an interminable prolegom ena) how representation theory can offer new perspectives on familiar topics and by offering some insight into some important themes in representation theory itself. Especially, we hope this book popularizes Harish-Chandra's restriction formula, which, besides being basic to his work, is simply a beautiful example of Fourier analysis on Euclidean space. We also hope representation theorists will enjoy seeing examples of how their subject can be used and will be stimulated by some of the viewpoints offered on representation-theoretic issues.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book mainly discusses the representation theory of the special linear group 8L(2, 1R), and some applications of this theory. In fact the emphasis is on the applications; the working title of the book while it was being writ ten was "Some Things You Can Do with 8L(2). " Some of the applications are outside representation theory, and some are to representation theory it self. The topics outside representation theory are mostly ones of substantial classical importance (Fourier analysis, Laplace equation, Huyghens' prin ciple, Ergodic theory), while the ones inside representation theory mostly concern themes that have been central to Harish-Chandra's development of harmonic analysis on semisimple groups (his restriction theorem, regularity theorem, character formulas, and asymptotic decay of matrix coefficients and temperedness). We hope this mix of topics appeals to nonspecialists in representation theory by illustrating (without an interminable prolegom ena) how representation theory can offer new perspectives on familiar topics and by offering some insight into some important themes in representation theory itself. Especially, we hope this book popularizes Harish-Chandra's restriction formula, which, besides being basic to his work, is simply a beautiful example of Fourier analysis on Euclidean space. We also hope representation theorists will enjoy seeing examples of how their subject can be used and will be stimulated by some of the viewpoints offered on representation-theoretic issues.
This book discusses the representation theory of the group SL(2, R), and some applications of this theory. The emphasis is in fact on the applications, some of which are outside representation theory and some are to representation theory itself. The topics outside representation theory are mostly of substantial classical importance (Fourier analysis, Laplace equation, Huyghen's Principle, Ergodic theory), while those inside representation theory mostly concern themes that have been central to Harish-Chandra's development of harmonic analysis on semisimple groups. This mix of topics should appeal to non-specialists in representation theory by illustrating how the theory can offer new perspectives on familiar topics, and by offering some insight into some important themes in representation theory itself.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 43 HOW 9780387977683 Sprache: Englisch Gewicht in Gramm: 550. Bestandsnummer des Verkäufers 2500021
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 1535210/202
Anzahl: 1 verfügbar
Anbieter: Fachbuch-Versandhandel, Freiburg, Deutschland
Springer-Verlag, broschiert, guter und sauberer Zustand, h4. Bestandsnummer des Verkäufers V8-7NOE-TNU4
Anzahl: 1 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-89100
Anzahl: 1 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-90080
Anzahl: 1 verfügbar
Anbieter: ALLBOOKS1, Direk, SA, Australien
Bestandsnummer des Verkäufers SHUB90080
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Bestandsnummer des Verkäufers 5913104
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 276. Bestandsnummer des Verkäufers 18745767
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 276. Bestandsnummer des Verkäufers 26745773
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book mainly discusses the representation theory of the special linear group 8L(2, 1R), and some applications of this theory. In fact the emphasis is on the applications; the working title of the book while it was being writ ten was 'Some Things You Can Do with 8L(2). ' Some of the applications are outside representation theory, and some are to representation theory it self. The topics outside representation theory are mostly ones of substantial classical importance (Fourier analysis, Laplace equation, Huyghens' prin ciple, Ergodic theory), while the ones inside representation theory mostly concern themes that have been central to Harish-Chandra's development of harmonic analysis on semisimple groups (his restriction theorem, regularity theorem, character formulas, and asymptotic decay of matrix coefficients and temperedness). We hope this mix of topics appeals to nonspecialists in representation theory by illustrating (without an interminable prolegom ena) how representation theory can offer new perspectives on familiar topics and by offering some insight into some important themes in representation theory itself. Especially, we hope this book popularizes Harish-Chandra's restriction formula, which, besides being basic to his work, is simply a beautiful example of Fourier analysis on Euclidean space. We also hope representation theorists will enjoy seeing examples of how their subject can be used and will be stimulated by some of the viewpoints offered on representation-theoretic issues.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 276 pp. Englisch. Bestandsnummer des Verkäufers 9780387977683
Anzahl: 2 verfügbar