This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a very timely manner. Our special thanks go to our spouses, Gautami and Draga, for their support.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a very timely manner. Our special thanks go to our spouses, Gautami and Draga, for their support.
This volume provides a thorough introduction and reference for any researcher who is interested in Bayesian inference for wavelet-based models, but is not necessarily an expert in either. To achieve this goal the book starts with an extensive introductory chapter providing a self-contained introduction to the use of wavelet decompositions and the relation to Bayesian inference. The remaining papers in this volume are divided into six parts: independent prior modeling; decision theoretic aspects; dependent prior modeling; spatial models using bivariate wavelet bases; empirical Bayes approaches; and case studies. Chapters are written by experts who published the original research papers establishing the use of wavelet-based models in Bayesian inference. Peter Müller is Associate Professor and Brani Vidakovic is Assistant Professor of Statistics at Duke University.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerEUR 2,30 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD conditon, some traces of use. Sf 217 9780387988856 Sprache: Englisch Gewicht in Gramm: 550. Bestandsnummer des Verkäufers 2086534
Anzahl: 1 verfügbar
Anbieter: Ammareal, Morangis, Frankreich
Softcover. Zustand: Bon. Ancien livre de bibliothèque. Livre un peu vrillé. Petite(s) trace(s) de pliure sur la couverture. Légères traces d'usure sur la couverture. Salissures sur la tranche. Traces d'humidité sur les pages. Traces d'humidité sur les premières et dernières pages ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Book slightly twisted. Slightly creased cover. Slight signs of wear on the cover. Stains on the edge. Traces of humidity on the pages. Traces of humidity on the first and last pages. Edition 1999. Ammareal gives back up to 15% of this. Bestandsnummer des Verkäufers E-812-762
Anzahl: 1 verfügbar
Anbieter: Ammareal, Morangis, Frankreich
Softcover. Zustand: Bon. Ancien livre de bibliothèque. Petite(s) trace(s) de pliure sur la couverture. Edition 1999. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Slightly creased cover. Edition 1999. Ammareal gives back up to 15% of this item's net price to charity organizations. Bestandsnummer des Verkäufers E-563-401
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 416. Bestandsnummer des Verkäufers 182579906
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 416. Bestandsnummer des Verkäufers 262579912
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 416 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 5300759
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling. Bestandsnummer des Verkäufers 5913551
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a very timely manner. Our special thanks go to our spouses, Gautami and Draga, for their support.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 416 pp. Englisch. Bestandsnummer des Verkäufers 9780387988856
Anzahl: 1 verfügbar
Anbieter: HPB-Red, Dallas, TX, USA
paperback. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_430349764
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This volume provides a thorough introduction and reference for any researcher who is interested in Bayesian inference for wavelet-based models, but is not necessarily an expert in either. To achieve this goal the book starts with an extensive introductory chapter providing a self-contained introduction to the use of wavelet decompositions and the relation to Bayesian inference. The remaining papers in this volume are divided into six parts: independent prior modeling; decision theoretic aspects; dependent prior modeling; spatial models using bivariate wavelet bases; empirical Bayes approaches; and case studies. Chapters are written by experts who published the original research papers establishing the use of wavelet-based models in Bayesian inference. Bestandsnummer des Verkäufers 9780387988856
Anzahl: 1 verfügbar