Dealing with methods for sampling from posterior distributions and how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples, this book addresses such topics as improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data, and is intended as a graduate textbook or a reference book for a one-semester course at the advanced masters or Ph.D. level. It will also serve as a useful reference for applied or theoretical researchers as well as practitioners.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
"This book combines the theory topics with good computer and application examples from the field of food science, agriculture, cancer and others. The volume will provide an excellent research resource for statisticians with an interest in computer intensive methods for modelling with different sorts of prior information."
A.V. Tsukanov in "Short Book Reviews", Vol. 20/3, December 2000
Dealing with methods for sampling from posterior distributions and how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples, this book addresses such topics as improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data, and is intended as a graduate textbook or a reference book for a one-semester course at the advanced masters or Ph.D. level. It will also serve as a useful reference for applied or theoretical researchers as well as practitioners.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 15,73 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Better World Books, Mishawaka, IN, USA
Zustand: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. Bestandsnummer des Verkäufers 10847492-6
Anzahl: 1 verfügbar
Anbieter: Better World Books: West, Reno, NV, USA
Zustand: Good. Used book that is in clean, average condition without any missing pages. Bestandsnummer des Verkäufers 2306751-6
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dealing with methods for sampling from posterior distributions and how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples, this book addresses such topics as improving simulation accuracy, marginal posterior density es. Bestandsnummer des Verkäufers 5913580
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -Sampling from the posterior distribution and computing posterior quanti ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 406 pp. Englisch. Bestandsnummer des Verkäufers 9780387989358
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictiveand latent residual approaches. The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners. Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute. 406 pp. Englisch. Bestandsnummer des Verkäufers 9780387989358
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Sampling from the posterior distribution and computing posterior quanti ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications. Bestandsnummer des Verkäufers 9780387989358
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780387989358_new
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 777. Bestandsnummer des Verkäufers C9780387989358
Anzahl: Mehr als 20 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Hardcover. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA78703879893586
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 408. Bestandsnummer des Verkäufers 26295839
Anzahl: 4 verfügbar