Applications of Deep Machine Learning in Future Energy Systems pushes the limits of current Artificial Intelligence techniques to present deep machine learning suitable for the complexity of sustainable energy systems. The first two chapters take the reader through the latest trends in power engineering and system design and operation before laying out current AI approaches and limitations. Later chapters provide in-depth accounts of specific challenges and the use of innovative third-generation machine learning, including neuromorphic computing, to resolve issues from security to power supply. An essential tool for the management, control, and modelling of future energy systems, this book maps a practical path towards AI capable of supporting sustainable energy.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Mohammad-Hassan Khooban is an Assistant Professor in the Department of Engineering and the Director of the Power Circuits and Systems Research Group at Aarhus University in Denmark. He has authored or co-authored more than 220 publications in peer-reviewed journals (mostly IEEE) and international conferences, written three book chapters, and holds one patent. He has been involved in six national and international projects. He was identified in 2019, 2020, and 2021 by Stanford University as one of the world’s top 2% researchers in engineering. He was also ranked 16th in the list of top 30 Electronics and Electrical Engineering Scientists in Denmark in 2022. His research interests include the application of advanced control, and optimization of artificial intelligence-inspired techniques in power electronics and systems.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-372308
Anzahl: 4 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-17231
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 1st edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26398987697
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18398987707
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 398437998
Anzahl: 4 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 334 pages. 9.00x5.94x2.36 inches. In Stock. Bestandsnummer des Verkäufers __0443214328
Anzahl: 2 verfügbar
Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien
Zustand: new. Questo è un articolo print on demand. Bestandsnummer des Verkäufers 3CWMY3GEMI
Anzahl: Mehr als 20 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Paperback. Zustand: new. Paperback. Applications of Deep Machine Learning in Future Energy Systems pushes the limits of current Artificial Intelligence techniques to present deep machine learning suitable for the complexity of sustainable energy systems. The first two chapters take the reader through the latest trends in power engineering and system design and operation before laying out current AI approaches and limitations. Later chapters provide in-depth accounts of specific challenges and the use of innovative third-generation machine learning, including neuromorphic computing, to resolve issues from security to power supply.An essential tool for the management, control, and modelling of future energy systems, this book maps a practical path towards AI capable of supporting sustainable energy. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9780443214325
Anzahl: 1 verfügbar