Machine Learning in Geohazard Risk Prediction and Assessment: From Microscale Analysis to Regional Mapping presents an overview of the most recent developments in machine learning techniques that have reshaped our understanding of geo-materials and management protocols of geo-risk. The book covers a broad category of research on machine-learning techniques that can be applied, from microscopic modeling to constitutive modeling, to physics-based numerical modeling, to regional susceptibility mapping. This is a good reference for researchers, academicians, graduate and undergraduate students, professionals, and practitioners in the field of geotechnical engineering and applied geology.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Professor Pradhan is a globally recognized expert in geospatial analytics and artificial intelligence applications in Earth and environmental sciences. Currently a Distinguished Professor at the University of Technology Sydney (UTS), Australia, he also leads the Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS). With a PhD in GIS-based modeling, Prof. Pradhan has over two decades of experience in spatial data science, remote sensing, natural hazard modeling, and environmental monitoring. He has been listed among the world's top 2% scientists by Stanford University and received numerous international awards, including from IEEE and Elsevier. A Fellow of the Royal Geographical Society (FRGS), he also serves on editorial boards of several top-tier journals. His research integrates geospatial AI and deep learning for disaster risk reduction, land use planning, and sustainability.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien
Zustand: new. Questo è un articolo print on demand. Bestandsnummer des Verkäufers GLGJAGPH8K
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. Machine Learning in Geohazard Risk Prediction and Assessment: From Microscale Analysis to Regional Mapping presents an overview of the most recent developments in machine learning techniques that have reshaped our understanding of geo-materials and management protocols of geo-risk. The book covers a broad category of research on machine-learning techniques that can be applied, from microscopic modeling to constitutive modeling, to physics-based numerical modeling, to regional susceptibility mapping. This is a good reference for researchers, academicians, graduate and undergraduate students, professionals, and practitioners in the field of geotechnical engineering and applied geology. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780443236631
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 397552776
Anzahl: 3 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 1st edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26398824279
Anzahl: 3 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 325 pages. 7.52x0.89x9.25 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __0443236631
Anzahl: 2 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18398824285
Anzahl: 3 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 47439090-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 47439090-n
Anzahl: Mehr als 20 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Paperback. Zustand: new. Paperback. Machine Learning in Geohazard Risk Prediction and Assessment: From Microscale Analysis to Regional Mapping presents an overview of the most recent developments in machine learning techniques that have reshaped our understanding of geo-materials and management protocols of geo-risk. The book covers a broad category of research on machine-learning techniques that can be applied, from microscopic modeling to constitutive modeling, to physics-based numerical modeling, to regional susceptibility mapping. This is a good reference for researchers, academicians, graduate and undergraduate students, professionals, and practitioners in the field of geotechnical engineering and applied geology. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9780443236631
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 47439090
Anzahl: Mehr als 20 verfügbar