Machine Learning Solutions for Inverse Problems: Part A, Volume 26 in the Handbook of Numerical Analysis, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Data-Driven Approaches for Generalized Lasso Problems, Implicit Regularization of the Deep Inverse Prior via (Inertial) Gradient Flow, Generalized Hardness of Approximation, Hallucinations, and Trustworthiness in Machine Learning for Inverse Problems, Energy-Based Models for Inverse Imaging Problems, Regularization Theory of Stochastic Iterative Methods for Solving Inverse Problems, and more.
Other sections cover Advances in Identifying Differential Equations from Noisy Data Observations, The Complete Electrode Model for Electrical Impedance Tomography: A Comparative Study of Deep Learning and Analytical Methods, Learned Iterative Schemes: Neural Network Architectures for Operator Learning, Jacobian-Free Backpropagation for Unfolded Schemes with Convergence Guarantees, and Operator Learning Meets Inverse Problems: A Probabilistic Perspective
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Andreas Hauptmann received his PhD in 2017 from the University of Helsinki in Applied Mathematics. He currently holds a position as Academy Research Fellow and Associate Professor (tenure track) of Computational Mathematics at the Research Unit of Mathematical Sciences, University of Oulu, and as Honorary Associate Professor at the Department of Computer Science, University College London. His research interest is in inverse problems and tomographic imaging, with a focus on combining model-based inversion techniques with data-driven methods and the study of their theoretical properties.
Bangti Jin received a PhD in Mathematics from The Chinese University
of Hong Kong, Hong Kong in 2008. Previously, he was Lecturer and Reader, and Professor at Department of Computer Science, University
College London (2014-2022), an assistant professor of Mathematics at the University of California, Riverside (2013–2014), a visiting assistant professor at Texas A&M University (2010–2013), an Alexandre von Humboldt Postdoctoral Researcher at University of Bremen (2009–2010). Currently he is Professor of Mathematics, Global STEM Scholar, at The Chinese University of Hong Kong. His research interests include inverse problems, numerical analysis and machine learning.
Carola-Bibiane Schönlieb graduated from the Institute for Mathematics, University of Salzburg (Austria) in 2004. From 2004 to 2005 she held a teaching position in Salzburg. She received her PhD degree from the University of Cambridge (UK) in 2009. After one year of postdoctoral activity at the University of Göttingen (Germany), she became a Lecturer at Cambridge in 2010, promoted to Reader in 2015 and promoted to Professor in 2018. Since 2011 she is a fellow of Jesus College Cambridge. She currently is Professor of Applied Mathematics (2006) at the University of Cambridge where she is head of the Cambridge Image Analysis group. Her current research interests focus on variational methods, partial differential equations and machine learning for image analysis, image processing and inverse imaging problems.
Machine Learning Solutions for Inverse Problems: Part A, Volume 26 of the series Handbook of Numerical Analysis, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien
Zustand: new. Questo è un articolo print on demand. Bestandsnummer des Verkäufers OTBILWHY3O
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 409355830
Anzahl: 3 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26403831273
Anzahl: 3 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18403831267
Anzahl: 3 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 500 pages. 9.00x6.00x9.24 inches. In Stock. Bestandsnummer des Verkäufers __044341789X
Anzahl: 2 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 50326827
Anzahl: 5 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 50326827-n
Anzahl: 5 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. Machine Learning Solutions for Inverse Problems: Part A, Volume 26 in the Handbook of Numerical Analysis, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Data-Driven Approaches for Generalized Lasso Problems, Implicit Regularization of the Deep Inverse Prior via (Inertial) Gradient Flow, Generalized Hardness of Approximation, Hallucinations, and Trustworthiness in Machine Learning for Inverse Problems, Energy-Based Models for Inverse Imaging Problems, Regularization Theory of Stochastic Iterative Methods for Solving Inverse Problems, and more.Other sections cover Advances in Identifying Differential Equations from Noisy Data Observations, The Complete Electrode Model for Electrical Impedance Tomography: A Comparative Study of Deep Learning and Analytical Methods, Learned Iterative Schemes: Neural Network Architectures for Operator Learning, Jacobian-Free Backpropagation for Unfolded Schemes with Convergence Guarantees, and Operator Learning Meets Inverse Problems: A Probabilistic Perspective Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780443417894
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Hardcover. Zustand: new. Hardcover. Machine Learning Solutions for Inverse Problems: Part A, Volume 26 in the Handbook of Numerical Analysis, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Data-Driven Approaches for Generalized Lasso Problems, Implicit Regularization of the Deep Inverse Prior via (Inertial) Gradient Flow, Generalized Hardness of Approximation, Hallucinations, and Trustworthiness in Machine Learning for Inverse Problems, Energy-Based Models for Inverse Imaging Problems, Regularization Theory of Stochastic Iterative Methods for Solving Inverse Problems, and more.Other sections cover Advances in Identifying Differential Equations from Noisy Data Observations, The Complete Electrode Model for Electrical Impedance Tomography: A Comparative Study of Deep Learning and Analytical Methods, Learned Iterative Schemes: Neural Network Architectures for Operator Learning, Jacobian-Free Backpropagation for Unfolded Schemes with Convergence Guarantees, and Operator Learning Meets Inverse Problems: A Probabilistic Perspective This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9780443417894
Anzahl: 1 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2025. hardcover. . . . . . Bestandsnummer des Verkäufers V9780443417894
Anzahl: 14 verfügbar