The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any a priori assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in H1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established.In the nonlinear case, again after ad hoc scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von Kármán equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
...It is an important work describing the justification of two-dimentional engineering theories of plates and shallow shells and should be purchased by university libraries.
Applied Mechanics Reviews, Vol.51, No.6
The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any a priori assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in H1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established.
In the nonlinear case, again after ad hoc scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von Kármán equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-95795
Anzahl: 1 verfügbar
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 74 CIA vol.2 9780444825704 Sprache: Englisch Gewicht in Gramm: 1150. Bestandsnummer des Verkäufers 2499887
Anzahl: 1 verfügbar
Anbieter: ALLBOOKS1, Direk, SA, Australien
Brand new book. Fast ship. Please provide full street address as we are not able to ship toPOboxaddress. Bestandsnummer des Verkäufers SHUB95795
Anzahl: 1 verfügbar
Anbieter: Libreria sottomarina - Studio Bibliografico, ROMA, RM, Italien
rilegato. Zustand: Perfetto (Mint). Book. Bestandsnummer des Verkäufers cg01avTEK
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780444825704_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9780444825704
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9780444825704
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Shows how asymptotic methods, with the thickness as the small parameter, indeed provide a means of justifying two-dimensional plate theories. This book demonstrates that asymptotic methods can be used for justifying other lower-dimensional equations of elas. Bestandsnummer des Verkäufers 594687140
Anzahl: Mehr als 20 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9780444825704
Anzahl: 1 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Hardcover. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA75804448257035
Anzahl: 1 verfügbar