The only single-source――now completely updated and revised――to offer a unified treatment of the theory, methodology, and applications of the EM algorithm
Complete with updates that capture developments from the past decade, The EM Algorithm and Extensions, Second Edition successfully provides a basic understanding of the EM algorithm by describing its inception, implementation, and applicability in numerous statistical contexts. In conjunction with the fundamentals of the topic, the authors discuss convergence issues and computation of standard errors, and, in addition, unveil many parallels and connections between the EM algorithm and Markov chain Monte Carlo algorithms. Thorough discussions on the complexities and drawbacks that arise from the basic EM algorithm, such as slow convergence and lack of an in-built procedure to compute the covariance matrix of parameter estimates, are also presented.
While the general philosophy of the First Edition has been maintained, this timely new edition has been updated, revised, and expanded to include:
New chapters on Monte Carlo versions of the EM algorithm and generalizations of the EM algorithm
New results on convergence, including convergence of the EM algorithm in constrained parameter spaces
Expanded discussion of standard error computation methods, such as methods for categorical data and methods based on numerical differentiation
Coverage of the interval EM, which locates all stationary points in a designated region of the parameter space
Exploration of the EM algorithm's relationship with the Gibbs sampler and other Markov chain Monte Carlo methods
Plentiful pedagogical elements―chapter introductions, lists of examples, author and subject indices, computer-drawn graphics, and a related Web site
The EM Algorithm and Extensions, Second Edition serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practitioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Geoffrey J. McLachlan, PhD, DSc, is Professor of Statistics in the Department of Mathematics at The University of Queensland, Australia. A Fellow of the American Statistical Association and the Australian Mathematical Society, he has published extensively on his research interests, which include cluster and discriminant analyses, image analysis, machine learning, neural networks, and pattern recognition. Dr. McLachlan is the author or coauthor of Analyzing Microarray Gene Expression Data, Finite Mixture Models, and Discriminant Analysis and Statistical Pattern Recognition, all published by Wiley.
Thriyambakam Krishnan, PhD, is Chief Statistical Architect, SYSTAT Software at Cranes Software International Limited in Bangalore, India. Dr. Krishnan has over forty-five years of research, teaching, consulting, and software development experience at the Indian Statistical Institute (ISI). His research interests include biostatistics, image analysis, pattern recognition, psychometry, and the EM algorithm.
The only single-source——now completely updated and revised——to offer a unified treatment of the theory, methodology, and applications of the EM algorithm
Complete with updates that capture developments from the past decade, The EM Algorithm and Extensions, Second Edition successfully provides a basic understanding of the EM algorithm by describing its inception, implementation, and applicability in numerous statistical contexts. In conjunction with the fundamentals of the topic, the authors discuss convergence issues and computation of standard errors, and, in addition, unveil many parallels and connections between the EM algorithm and Markov chain Monte Carlo algorithms. Thorough discussions on the complexities and drawbacks that arise from the basic EM algorithm, such as slow convergence and lack of an in-built procedure to compute the covariance matrix of parameter estimates, are also presented.
While the general philosophy of the First Edition has been maintained, this timely new edition has been updated, revised, and expanded to include:
New chapters on Monte Carlo versions of the EM algorithm and generalizations of the EM algorithm
New results on convergence, including convergence of the EM algorithm in constrained parameter spaces
Expanded discussion of standard error computation methods, such as methods for categorical data and methods based on numerical differentiation
Coverage of the interval EM, which locates all stationary points in a designated region of the parameter space
Exploration of the EM algorithm's relationship with the Gibbs sampler and other Markov chain Monte Carlo methods
Plentiful pedagogical elements—chapter introductions, lists of examples, author and subject indices, computer-drawn graphics, and a related Web site
The EM Algorithm and Extensions, Second Edition serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practitioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,12 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 5,74 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780471201700_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9780471201700
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9780471201700
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 1544514-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 1544514-n
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Geoffrey J. McLachlan, PhD, DSc, is Professor of Statistics in the Department of Mathematics at The University of Queensland, Australia. A Fellow of the American Statistical Association and the Australian Mathematical Society, he has published extensively o. Bestandsnummer des Verkäufers 446915205
Anzahl: Mehr als 20 verfügbar
Anbieter: Textbooks_Source, Columbia, MO, USA
hardcover. Zustand: New. 2nd Edition. Ships in a BOX from Central Missouri! UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Bestandsnummer des Verkäufers 000776002N
Anzahl: 6 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 1544514
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 1544514
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. New copy - Usually dispatched within 4 working days. 764. Bestandsnummer des Verkäufers B9780471201700
Anzahl: Mehr als 20 verfügbar