An up-to-date approach to understanding statistical inference
Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas.
Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics.
The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions.
Chapter coverage includes:
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
MERVYN J. SILVAPULLE, PhD, is an Associate Professor in the Department of Statistical Science at La Trobe University in Bundoora, Australia. He received his PhD in statistics from the Australian National University in 1981.
PRANAB K. SEN, PhD, is a Professor in the Departments of Biostatistics and Statistics and Operations Research at the University of North Carolina at Chapel Hill. He received his PhD in 1962 from Calcutta University, India.
An up-to-date approach to understanding statistical inference
Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas.
Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics.
The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions.
Chapter coverage includes:
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,03 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 4,68 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers FW-9780471208273
Anzahl: 15 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. MERVYN J. SILVAPULLE, PhD, is an Associate Professor in the Department of Statistical Science at La Trobe University in Bundoora, Australia. He received his PhD in statistics from the Australian National University in 1981.PRANAB K. SEN, PhD, is a Professor. Bestandsnummer des Verkäufers 446915235
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780471208273_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 1544515-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 1544515-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 1544515
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 1544515
Anzahl: Mehr als 20 verfügbar
Anbieter: Solr Books, Lincolnwood, IL, USA
Zustand: very_good. This books is in Very good condition. There may be a few flaws like shelf wear and some light wear. Bestandsnummer des Verkäufers 5D400000B8W1_ns
Anzahl: 1 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Hardcover. Zustand: new. Hardcover. An up-to-date approach to understanding statistical inference Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas. Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics. The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions. Chapter coverage includes: Population means and isotonic regressionInequality-constrained tests on normal meansTests in general parametric modelsLikelihood and alternativesAnalysis of categorical dataInference on monotone density function, unimodal density function, shape constraints, and DMRL functionsBayesian perspectives, including Steins Paradox, shrinkage estimation, and decision theory An up-to-date approach to understanding statistical inference Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9780471208273
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - An up-to-date approach to understanding statistical inferenceStatistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas.Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics.The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions.Chapter coverage includes:Population means and isotonic regressionInequality-constrained tests on normal meansTests in general parametric modelsLikelihood and alternativesAnalysis of categorical dataInference on monotone density function, unimodal density function, shape constraints, and DMRL functionsBayesian perspectives, including Stein's Paradox, shrinkage estimation, and decision theory. Bestandsnummer des Verkäufers 9780471208273
Anzahl: 2 verfügbar