This brilliant study by a famed mathematical scholar and former professor of mathematics at the University of Amsterdam integrates a concise exposition of the mathematical basis of tensor analysis with admirably chosen physical examples of the theory.
The first five chapters incisively set out the mathematical theory underlying the use of tensors. The tensor algebra in EN and RN is developed in Chapters I and II. Chapter II introduces a sub-group of the affine group, then deals with the identification of quantities in EN. The tensor analysis in XN is developed in Chapter IV. In chapters VI through IX, Professor Schouten presents applications of the theory that are both intrinsically interesting and good examples of the use and advantages of the calculus. Chapter VI, intimately connected with Chapter III, shows that the dimensions of physical quantities depend upon the choice of the underlying group, and that tensor calculus is the best instrument for dealing with the properties of anisotropic media. In Chapter VII, modern tensor calculus is applied to some old and some modern problems of elasticity and piezo-electricity. Chapter VIII presents examples concerning anholonomic systems and the homogeneous treatment of the equations of Lagrange and Hamilton. Chapter IX deals first with relativistic kinematics and dynamics, then offers an exposition of modern treatment of relativistic hydrodynamics. Chapter X introduces Dirac’s matrix calculus. Two especially valuable features of the book are the exercises at the end of each chapter, and a summary of the mathematical theory contained in the first five chapters — ideal for readers whose primary interest is in physics rather than mathematics.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Book Bear, West Brookfield, MA, USA
Paperback. Zustand: Fine. 277 pp. Tightly bound. Spine not compromised Text is free of markings. No ownership markings. Bestandsnummer des Verkäufers 024714
Anzahl: 1 verfügbar
Anbieter: Chequamegon Books, Washburn, WI, USA
paperback. Zustand: fine. second edition. 5 3/8 x 8 1/2 " 289 pages. Unabridged republication of the Oxford University Press 1954 second edition. previous owner's bookplate on first page. Bestandsnummer des Verkäufers 128701
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 438864-n
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Tensor Analysis for Physicists, Second Edition. Book. Bestandsnummer des Verkäufers BBS-9780486655826
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 438864
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2215580230216
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9780486655826
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. Bestandsnummer des Verkäufers LU-9780486655826
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. This brilliant study by a famed mathematical scholar and former professor of mathematics at the University of Amsterdam integrates a concise exposition of the mathematical basis of tensor analysis with admirably chosen physical examples of the theory.The first five chapters incisively set out the mathematical theory underlying the use of tensors. The tensor algebra in EN and RN is developed in Chapters I and II. Chapter II introduces a sub-group of the affine group, then deals with the identification of quantities in EN. The tensor analysis in XN is developed in Chapter IV. In chapters VI through IX, Professor Schouten presents applications of the theory that are both intrinsically interesting and good examples of the use and advantages of the calculus. Chapter VI, intimately connected with Chapter III, shows that the dimensions of physical quantities depend upon the choice of the underlying group, and that tensor calculus is the best instrument for dealing with the properties of anisotropic media. In Chapter VII, modern tensor calculus is applied to some old and some modern problems of elasticity and piezo-electricity. Chapter VIII presents examples concerning anholonomic systems and the homogeneous treatment of the equations of Lagrange and Hamilton. Chapter IX deals first with relativistic kinematics and dynamics, then offers an exposition of modern treatment of relativistic hydrodynamics. Chapter X introduces Dirac's matrix calculus. Two especially valuable features of the book are the exercises at the end of each chapter, and a summary of the mathematical theory contained in the first five chapters - ideal for readers whose primary interest is in physics rather than mathematics. Rigorous, advanced mathematical explanation of classic tensor analysis, written by a founder of tensor calculus. Well-chosen physical examples of the theory involve elasticity, classical dynamics, relativity, and Dirac's matrix calculus. 1954 edition. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780486655826
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers LU-9780486655826
Anzahl: Mehr als 20 verfügbar