The 'large sieve', an important technical tool of analytic number theory, has advanced extensively in recent years. This book develops a general form of sieve inequality, and describes its varied, sometimes surprising applications, with potential uses in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Emmanuel Kowalski is Professor in the Departement Mathematik at ETH Zürich.
Book by Kowalski E
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 29,30 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 3,97 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Labyrinth Books, Princeton, NJ, USA
Zustand: New. Bestandsnummer des Verkäufers 138230
Anzahl: 8 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780521888516_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2416190020496
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 660. Bestandsnummer des Verkäufers C9780521888516
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9780521888516
Anzahl: Mehr als 20 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Hardcover. Zustand: new. Hardcover. Among the modern methods used to study prime numbers, the 'sieve' has been one of the most efficient. Originally conceived by Linnik in 1941, the 'large sieve' has developed extensively since the 1960s, with a recent realization that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups. The 'large sieve', an important technical tool of analytic number theory, has advanced extensively in recent years. This book develops a general form of sieve inequality, and describes its varied, sometimes surprising applications, with potential uses in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9780521888516
Anzahl: 1 verfügbar
Anbieter: Grand Eagle Retail, Fairfield, OH, USA
Hardcover. Zustand: new. Hardcover. Among the modern methods used to study prime numbers, the 'sieve' has been one of the most efficient. Originally conceived by Linnik in 1941, the 'large sieve' has developed extensively since the 1960s, with a recent realization that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups. The 'large sieve', an important technical tool of analytic number theory, has advanced extensively in recent years. This book develops a general form of sieve inequality, and describes its varied, sometimes surprising applications, with potential uses in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780521888516
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 320 pages. 9.25x6.25x1.00 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __0521888514
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The large sieve , an important technical tool of analytic number theory, has advanced extensively in recent years. This book develops a general form of sieve inequality, and describes its varied, sometimes surprising applications, with potential uses in fi. Bestandsnummer des Verkäufers 446952370
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. xxi + 293 Index. Bestandsnummer des Verkäufers 26416152
Anzahl: 4 verfügbar