An update of this popular introduction to probability theory and information theory with new material on Markov chains.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
David Applebaum is a Professor in the Department of Probability and Statistics at the University of Sheffield.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Bookbot, Prague, Tschechien
Hardcover. Zustand: Fine. Leichte Risse. This new and updated textbook is an excellent way to introduce probability and information theory to students new to mathematics, computer science, engineering, statistics, economics, or business studies. Only requiring knowledge of basic calculus, it begins by building a clear and systematic foundation to probability and information. Classic topics covered include discrete and continuous random variables, entropy and mutual information, maximum entropy methods, the central limit theorem and the coding and transmission of information. Newly covered for this edition is modern material on Markov chains and their entropy. Examples and exercises are included to illustrate how to use the theory in a wide range of applications, with detailed solutions to most exercises available online for instructors. Bestandsnummer des Verkäufers 30808843-8071-4ac5-9e9a-1620942eac03
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2416190021106
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780521899048_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. This updated textbook is an excellent way to introduce probability and information theory to new students in mathematics, computer science, engineering, statistics, economics, or business studies. Only requiring knowledge of basic calculus, it starts by building a clear and systematic foundation to the subject: the concept of probability is given particular attention via a simplified discussion of measures on Boolean algebras. The theoretical ideas are then applied to practical areas such as statistical inference, random walks, statistical mechanics and communications modelling. Topics covered include discrete and continuous random variables, entropy and mutual information, maximum entropy methods, the central limit theorem and the coding and transmission of information, and added for this new edition is material on Markov chains and their entropy. Lots of examples and exercises are included to illustrate how to use the theory in a wide range of applications, with detailed solutions to most exercises available online for instructors. An update of this popular introduction to probability theory and information theory with new material on Markov chains. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780521899048
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 2nd edition. 273 pages. 9.75x7.00x0.75 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __0521899044
Anzahl: 1 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Bestandsnummer des Verkäufers C9780521899048
Anzahl: Mehr als 20 verfügbar
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Hardcover. Zustand: new. Hardcover. This updated textbook is an excellent way to introduce probability and information theory to new students in mathematics, computer science, engineering, statistics, economics, or business studies. Only requiring knowledge of basic calculus, it starts by building a clear and systematic foundation to the subject: the concept of probability is given particular attention via a simplified discussion of measures on Boolean algebras. The theoretical ideas are then applied to practical areas such as statistical inference, random walks, statistical mechanics and communications modelling. Topics covered include discrete and continuous random variables, entropy and mutual information, maximum entropy methods, the central limit theorem and the coding and transmission of information, and added for this new edition is material on Markov chains and their entropy. Lots of examples and exercises are included to illustrate how to use the theory in a wide range of applications, with detailed solutions to most exercises available online for instructors. An update of this popular introduction to probability theory and information theory with new material on Markov chains. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9780521899048
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Über den AutorDavid Applebaum is a Professor in the Department of Probability and Statistics at the University of Sheffield.InhaltsverzeichnisPreface to the first edition Preface to the second edition 1. Bestandsnummer des Verkäufers 594768407
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 250 Index 2nd Edition. Bestandsnummer des Verkäufers 26415874
Anzahl: 4 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Hardcover. Zustand: new. Hardcover. This updated textbook is an excellent way to introduce probability and information theory to new students in mathematics, computer science, engineering, statistics, economics, or business studies. Only requiring knowledge of basic calculus, it starts by building a clear and systematic foundation to the subject: the concept of probability is given particular attention via a simplified discussion of measures on Boolean algebras. The theoretical ideas are then applied to practical areas such as statistical inference, random walks, statistical mechanics and communications modelling. Topics covered include discrete and continuous random variables, entropy and mutual information, maximum entropy methods, the central limit theorem and the coding and transmission of information, and added for this new edition is material on Markov chains and their entropy. Lots of examples and exercises are included to illustrate how to use the theory in a wide range of applications, with detailed solutions to most exercises available online for instructors. An update of this popular introduction to probability theory and information theory with new material on Markov chains. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9780521899048
Anzahl: 1 verfügbar