Research on interior-point methods (IPMs) has dominated the field of mathematical programming for the last two decades. Two contrasting approaches in the analysis and implementation of IPMs are the so-called small-update and large-update methods, although, until now, there has been a notorious gap between the theory and practical performance of these two strategies. This book comes close to bridging that gap, presenting a new framework for the theory of primal-dual IPMs based on the notion of the self-regularity of a function. The authors deal with linear optimization, nonlinear complementarity problems, semidefinite optimization, and second-order conic optimization problems. The framework also covers large classes of linear complementarity problems and convex optimization. The algorithm considered can be interpreted as a path-following method or a potential reduction method. Starting from a primal-dual strictly feasible point, the algorithm chooses a search direction defined by some Newton-type system derived from the self-regular proximity. The iterate is then updated, with the iterates staying in a certain neighborhood of the central path until an approximate solution to the problem is found. By extensively exploring some intriguing properties of self-regular functions, the authors establish that the complexity of large-update IPMs can come arbitrarily close to the best known iteration bounds of IPMs. Researchers and postgraduate students in all areas of linear and nonlinear optimization will find this book an important and invaluable aid to their work.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Jiming Peng is Professor of Mathematics at McMaster University and has published widely on nonlinear programming and interior-points methods. Cornelis Roos holds joint professorships at Delft University of Technology and Leiden University. He is an editor of several journals, coauthor of more than 100 papers, and coauthor (with Tamas Terlaky and Jean-Philippe Vial) of "Theory and Algorithms for Linear Optimization". Tamas Terlaky is Professor in the Department of Computing and Software at McMaster University, founding Editor in Chief of "Optimization and Engineering", coauthor of more than 100 papers, and an editor of several journals and two books.
"The new idea of self-regular functions is very elegant and I am sure that this book will have a major impact on the field of optimization."--Robert Vanderbei, Princeton University
"The progress outlined in Self-Regularity represents one of the really major events in our field during the last five years or so. This book requires just standard mathematical background on the part of the reader and is thus accessible to beginners as well as experts."--Arkadi Nemirovski, Technion-Israel Institute of Technology
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Very Good. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Bestandsnummer des Verkäufers 0691091935-8-1
Anbieter: Better World Books Ltd, Dunfermline, Vereinigtes Königreich
Zustand: Very Good. Ships from the UK. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. Bestandsnummer des Verkäufers 15377757-75
Anzahl: 1 verfügbar
Anbieter: PsychoBabel & Skoob Books, Didcot, Vereinigtes Königreich
Paperback. Zustand: New. First Edition. Paperback in as-new condition: minor shelfwear only: contents clean, sound, bright. Used. Bestandsnummer des Verkäufers 219667
Anzahl: 1 verfügbar
Anbieter: Kadriin Blackwell, Greensville, ON, Kanada
Trade Paperback. Zustand: As New. Book. Bestandsnummer des Verkäufers 11230
Anzahl: 1 verfügbar
Anbieter: Labyrinth Books, Princeton, NJ, USA
Zustand: New. Bestandsnummer des Verkäufers 127371
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEOCT25-107184
Anbieter: ALLBOOKS1, Direk, SA, Australien
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Bestandsnummer des Verkäufers SHAK107184
Anbieter: BennettBooksLtd, San Diego, NV, USA
paperback. Zustand: New. In shrink wrap. Looks like an interesting title! Bestandsnummer des Verkäufers Q-0691091935
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 400147-n
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. Research on interior-point methods (IPMs) has dominated the field of mathematical programming for the last two decades. Two contrasting approaches in the analysis and implementation of IPMs are the so-called small-update and large-update methods, although, until now, there has been a notorious gap between the theory and practical performance of these two strategies. This book comes close to bridging that gap, presenting a new framework for the theory of primal-dual IPMs based on the notion of the self-regularity of a function. The authors deal with linear optimization, nonlinear complementarity problems, semidefinite optimization, and second-order conic optimization problems. The framework also covers large classes of linear complementarity problems and convex optimization. The algorithm considered can be interpreted as a path-following method or a potential reduction method. Starting from a primal-dual strictly feasible point, the algorithm chooses a search direction defined by some Newton-type system derived from the self-regular proximity.The iterate is then updated, with the iterates staying in a certain neighborhood of the central path until an approximate solution to the problem is found. By extensively exploring some intriguing properties of self-regular functions, the authors establish that the complexity of large-update IPMs can come arbitrarily close to the best known iteration bounds of IPMs. Researchers and postgraduate students in all areas of linear and nonlinear optimization will find this book an important and invaluable aid to their work. Bestandsnummer des Verkäufers LU-9780691091938
Anzahl: Mehr als 20 verfügbar