This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric?
The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank >1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces.
A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Jacques Gasqui & Hubert Goldschmidt
Introduction............................................................................................ix1. Riemannian manifolds.................................................................................12. Einstein manifolds...................................................................................153. Symmetric spaces.....................................................................................194. Complex manifolds....................................................................................271. Outline..............................................................................................322. Homogeneous vector bundles and harmonic analysis.....................................................323. The Guillemin and zero-energy conditions.............................................................364. Radon transforms.....................................................................................415. Radon transforms and harmonic analysis...............................................................506. Lie algebras.........................................................................................587. Irreducible symmetric spaces.........................................................................598. Criteria for the rigidity of an irreducible symmetric space..........................................681. Flat tori............................................................................................752. The projective spaces................................................................................833. The real projective space............................................................................894. The complex projective space.........................................................................945. The rigidity of the complex projective space.........................................................1046. The other projective spaces..........................................................................1121. The real Grassmannians...............................................................................1142. The Guillemin condition on the real Grassmannians....................................................1261. Outline..............................................................................................1342. The complex quadric viewed as a symmetric space......................................................1343. The complex quadric viewed as a complex hypersurface.................................................1384. Local Khler geometry of the complex quadric.........................................................1465. The complex quadric and the real Grassmannians.......................................................1526. Totally geodesic surfaces and the infinitesimal orbit of the curvature...............................1597. Multiplicities.......................................................................................1708. Vanishing results for symmetric forms................................................................1859. The complex quadric of dimension two.................................................................1901. Outline..............................................................................................1932. Total geodesic flat tori of the complex quadric......................................................1943. Symmetric forms on the complex quadric...............................................................1994. Computing integrals of symmetric forms...............................................................2045. Computing integrals of odd symmetric forms...........................................................2096. Bounds for the dimensions of spaces of symmetric forms...............................................2187. The complex quadric of dimension three...............................................................2238. The rigidity of the complex quadric..................................................................2299. Other proofs of the infinitesimal rigidity of the quadric............................................23210. The complex quadric of dimension four...............................................................23411. Forms of degree one.................................................................................2371. The rigidity of the real Grassmannians...............................................................2442. The real Grassmannians [[bar.G].sup.R.sub.n,n].......................................................2491. Outline..............................................................................................2572. The complex Grassmannians............................................................................2583. Highest weights of irreducible modules associated with the complex Grassmannians.....................2704. Functions and forms on the complex Grassmannians.....................................................2745. The complex Grassmannians of rank two................................................................2826. The Guillemin condition on the complex Grassmannians.................................................2877. Integrals of forms on the complex Grassmannians......................................................2938. Relations among forms on the complex Grassmannians...................................................3009. The complex Grassmannians [[bar.G].sup.C.sub.n,n]....................................................3031. The rigidity of the complex Grassmannians............................................................3082. On the rigidity of the complex Grassmannians [[bar.G].sup.C.sub.n,n].................................3133. The rigidity of the quaternionic Grassmannians.......................................................3231. Guillemin rigidity and products of symmetric spaces..................................................3292. Conformally flat symmetric spaces....................................................................3343. Infinitesimal rigidity of products of symmetric spaces...............................................3384. The infinitesimal rigidity of [[bar.G].sup.R.sub.2,2]................................................340References..............................................................................................357Index...................................................................................................363
1. Riemannian manifolds
Let X be a differentiable manifold of dimension n, whose tangent and cotangent bundles we denote by T = [T.sub.X] and [T.sup.*] = [T.sup.*.sub.X], respectively. Let [ITLITL.sup.[infinity]](X) be the space of complex-valued functions on X. By [[cross product].sup.k] E, [S.sup.l] E, [[LAMBDA].sup.j]E, we shall mean the k-th tensor product, the l-th symmetric product and the j-th exterior product of a vector bundle E over X, respectively. We shall identify [S.sup.k][T.sup.*] and [[LAMBDA].sup.k][T.sup.*] with sub-bundles of [[cross product].sup.k][T.sup.*] by means of the injective mappings
[S.sup.k][T.sup.*] -> [[cross product].sup.k][T.sup.*],...
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: ThriftBooks-Atlanta, AUSTELL, GA, USA
Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.17. Bestandsnummer des Verkäufers G069111899XI4N00
Anbieter: Broad Street Books, Branchville, NJ, USA
Paperback. Zustand: New. Brand New Book. Bestandsnummer des Verkäufers 54701
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
kartoniert. Zustand: Sehr gut. Zust: Gutes Exemplar. 366 Seiten, mit Abbildungen, Englisch 542g. Bestandsnummer des Verkäufers 494773
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 2095742-n
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank 1.The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces. A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry. Bestandsnummer des Verkäufers LU-9780691118994
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Offers an examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. This book focuses on the spectral rigidity problem.&Uu. Bestandsnummer des Verkäufers 447030462
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 2095742-n
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 2095742
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 384 pages. 8.75x6.00x1.00 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __069111899X
Anzahl: 1 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. Bestandsnummer des Verkäufers B9780691118994
Anzahl: 1 verfügbar