Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soulé arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Stephen S. Kudla is at the University of Maryland. Michael Rapoport is at the Mathematisches Institut der Universität, Bonn, Germany. Tonghai Yang is at the University of Wisconsin, Madison.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Michener & Rutledge Booksellers, Inc., Baldwin City, KS, USA
Paperback. Zustand: Very Good+. Text clean and tight; AM-161; 8vo 8" - 9" tall; 392 pages. Bestandsnummer des Verkäufers 239187
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 3486687
Anzahl: 1 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. A study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. Series: Annals of Mathematics Studies. Num Pages: 392 pages, 1 line illus. 3 tables. BIC Classification: PBH; PBKF. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152 x 20. Weight in Grams: 542. . 2006. Paperback. . . . . Bestandsnummer des Verkäufers V9780691125510
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WP-9780691125510
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 3486687-n
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 3486687
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 3486687-n
Anzahl: 1 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. Bestandsnummer des Verkäufers B9780691125510
Anzahl: 1 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. A study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. Series: Annals of Mathematics Studies. Num Pages: 392 pages, 1 line illus. 3 tables. BIC Classification: PBH; PBKF. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152 x 20. Weight in Grams: 542. . 2006. Paperback. . . . . Books ship from the US and Ireland. Bestandsnummer des Verkäufers V9780691125510
Anzahl: 1 verfügbar
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soule arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations.The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions. Bestandsnummer des Verkäufers LU-9780691125510
Anzahl: Mehr als 20 verfügbar