Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy)

4 durchschnittliche Bewertung
( 16 Bewertungen bei Goodreads )
 
9780691151687: Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy)

As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers.



Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest.



  • Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets

  • Features real-world data sets from contemporary astronomical surveys

  • Uses a freely available Python codebase throughout

  • Ideal for students and working astronomers

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

From the Back Cover:

"This comprehensive book is surely going to be regarded as one of the foremost texts in the new discipline of astrostatistics."--Joseph M. Hilbe, president of the International Astrostatistics Association

"In the era of data-driven science, many students and researchers have faced a barrier to entry. Until now, they have lacked an effective tutorial introduction to the array of tools and code for data mining and statistical analysis. The comprehensive overview of techniques provided in this book, accompanied by a Python toolbox, free readers to explore and analyze the data rather than reinvent the wheel."--Tony Tyson, University of California, Davis

"The authors are leading experts in the field who have utilized the techniques described here in their own very successful research. Statistics, Data Mining, and Machine Learning in Astronomy is a book that will become a key resource for the astronomy community."--Robert J. Hanisch, Space Telescope Science Institute

About the Author:

Željko Ivezić is professor of astronomy at the University of Washington. Andrew J. Connolly is professor of astronomy at the University of Washington. Jacob T. VanderPlas is an NSF postdoctoral research fellow in astronomy and computer science at the University of Washington. Alexander Gray is professor of computer science at Georgia Institute of Technology.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Neu kaufen Angebot ansehen

Versand: EUR 11,21
Von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

In den Warenkorb

Beste Suchergebnisse bei AbeBooks

1.

Ivezic, Zeljko
Verlag: Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Anzahl: > 20
Anbieter
Books2Anywhere
(Fairford, GLOS, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Princeton University Press, 2014. HRD. Buchzustand: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Buchnummer des Verkäufers WP-9780691151687

Weitere Informationen zu diesem Verkäufer | Frage an den Anbieter

Neu kaufen
EUR 62,00
Währung umrechnen

In den Warenkorb

Versand: EUR 11,21
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

2.

Željko Ivezić; Andrew J. Connolly; Jacob T VanderPlas; Alexander Gray
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Anzahl: 5
Anbieter
GreatBookPrices
(Columbia, MD, USA)
Bewertung
[?]

Buchbeschreibung Buchzustand: New. Buchnummer des Verkäufers 12080822-n

Weitere Informationen zu diesem Verkäufer | Frage an den Anbieter

Neu kaufen
EUR 71,79
Währung umrechnen

In den Warenkorb

Versand: EUR 10,19
Von USA nach Deutschland
Versandziele, Kosten & Dauer

3.

Zeljko Ivezic, Andrew J. Connolly, Jacob Vanderplas
Verlag: Princeton University Press, United States (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Hardcover Anzahl: 10
Anbieter
The Book Depository US
(London, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Princeton University Press, United States, 2014. Hardback. Buchzustand: New. Language: English . Brand New Book. As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers. Buchnummer des Verkäufers AAH9780691151687

Weitere Informationen zu diesem Verkäufer | Frage an den Anbieter

Neu kaufen
EUR 82,86
Währung umrechnen

In den Warenkorb

Versand: EUR 0,56
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

4.

Zeljko Ivezic, Andrew J. Connolly, Jacob Vanderplas
Verlag: Princeton University Press, United States (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Hardcover Anzahl: 10
Anbieter
The Book Depository
(London, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Princeton University Press, United States, 2014. Hardback. Buchzustand: New. Language: English . Brand New Book. As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers. Buchnummer des Verkäufers AAH9780691151687

Weitere Informationen zu diesem Verkäufer | Frage an den Anbieter

Neu kaufen
EUR 83,03
Währung umrechnen

In den Warenkorb

Versand: EUR 0,56
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

5.

Eljko Ivezic, Andrew Connolly, Jacob Vanderplas, Alexander Gray, Andrew J. Connolly, Jacob T Vanderplas, Alexander Gray
Verlag: Princeton University Press 2014-02-18, Princeton (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Hardcover Anzahl: > 20
Anbieter
Blackwell's
(Oxford, OX, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Princeton University Press 2014-02-18, Princeton, 2014. hardback. Buchzustand: New. Buchnummer des Verkäufers 9780691151687

Weitere Informationen zu diesem Verkäufer | Frage an den Anbieter

Neu kaufen
EUR 84,56
Währung umrechnen

In den Warenkorb

Versand: EUR 2,24
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

6.

Zeljko Ivezic, Andrew J. Connolly, Jacob T VanderPlas, Alexander Gray
Verlag: Princeton University Press 2014-01-12 (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Anzahl: 3
Anbieter
Chiron Media
(Wallingford, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Princeton University Press 2014-01-12, 2014. Buchzustand: New. Brand new book, sourced directly from publisher. Dispatch time is 24-48 hours from our warehouse. Book will be sent in robust, secure packaging to ensure it reaches you securely. Buchnummer des Verkäufers NU-LBR-01271235

Weitere Informationen zu diesem Verkäufer | Frage an den Anbieter

Neu kaufen
EUR 92,44
Währung umrechnen

In den Warenkorb

Versand: EUR 3,35
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

7.

Ivezic, Zeljko
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Anzahl: 1
Anbieter
Paperbackshop-US
(Wood Dale, IL, USA)
Bewertung
[?]

Buchbeschreibung 2014. HRD. Buchzustand: New. New Book. Shipped from US within 10 to 14 business days. Established seller since 2000. Buchnummer des Verkäufers KS-9780691151687

Weitere Informationen zu diesem Verkäufer | Frage an den Anbieter

Neu kaufen
EUR 84,61
Währung umrechnen

In den Warenkorb

Versand: EUR 12,74
Von USA nach Deutschland
Versandziele, Kosten & Dauer

8.

Ivezic, Zeljko
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Anzahl: > 20
Anbieter
Pbshop
(Wood Dale, IL, USA)
Bewertung
[?]

Buchbeschreibung 2014. HRD. Buchzustand: New. New Book.Shipped from US within 10 to 14 business days. Established seller since 2000. Buchnummer des Verkäufers IB-9780691151687

Weitere Informationen zu diesem Verkäufer | Frage an den Anbieter

Neu kaufen
EUR 87,79
Währung umrechnen

In den Warenkorb

Versand: EUR 12,74
Von USA nach Deutschland
Versandziele, Kosten & Dauer

9.

Zeljko Ivezic
Verlag: Princeton Univers. Press Mrz 2014 (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Anzahl: 1
Anbieter
Rheinberg-Buch
(Bergisch Gladbach, Deutschland)
Bewertung
[?]

Buchbeschreibung Princeton Univers. Press Mrz 2014, 2014. Buch. Buchzustand: Neu. Neuware - Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. 540 pp. Englisch. Buchnummer des Verkäufers 9780691151687

Weitere Informationen zu diesem Verkäufer | Frage an den Anbieter

Neu kaufen
EUR 101,99
Währung umrechnen

In den Warenkorb

Versand: Gratis
Innerhalb Deutschland
Versandziele, Kosten & Dauer

10.

Zeljko Ivezic
Verlag: Princeton Univers. Press Mrz 2014 (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Anzahl: 1
Anbieter
BuchWeltWeit Inh. Ludwig Meier e.K.
(Bergisch Gladbach, Deutschland)
Bewertung
[?]

Buchbeschreibung Princeton Univers. Press Mrz 2014, 2014. Buch. Buchzustand: Neu. Neuware - Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. 540 pp. Englisch. Buchnummer des Verkäufers 9780691151687

Weitere Informationen zu diesem Verkäufer | Frage an den Anbieter

Neu kaufen
EUR 101,99
Währung umrechnen

In den Warenkorb

Versand: Gratis
Innerhalb Deutschland
Versandziele, Kosten & Dauer

Es gibt weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen