Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy)

3,94 durchschnittliche Bewertung
( 18 Bewertungen bei Goodreads )
 
9780691151687: Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy)
Alle Exemplare der Ausgabe mit dieser ISBN anzeigen:
 
 

AS TELESCOPES, DETECTORS, AND COMPUTERS GROW EVER MORE POWERFUL, THE VOLUME OF DATA AT THE DISPOSAL OF ASTRONOMERS AND ASTROPHYSICISTS WILL ENTER THE PETABYTE DOMAIN, PROVIDING ACCURATE MEASUREMENTS FOR BILLIONS OF CELESTIAL OBJECTS. THIS BOOK PROVIDES A COMPREHENSIVE AND ACCESSIBLE INTRODUCTION TO THE CUTTING-EDGE STATISTICAL METHODS NEEDED TO EFFICIENTLY ANALYZE COMPLEX DATA SETS FROM ASTRONOMICAL SURVEYS SUCH AS THE PANORAMIC SURVEY TELESCOPE AND RAPID RESPONSE SYSTEM, THE DARK ENERGY SURVEY, AND THE UPCOMING LARGE SYNOPTIC SURVEY TELESCOPE. IT SERVES AS A PRACTICAL HANDBOOK FOR GRADUATE STUDENTS AND ADVANCED UNDERGRADUATES IN PHYSICS AND ASTRONOMY, AND AS AN INDISPENSABLE REFERENCE FOR RESEARCHERS. STATISTICS, DATA MINING, AND MACHINE LEARNING IN ASTRONOMY PRESENTS A WEALTH OF PRACTICAL ANALYSIS PROBLEMS, EVALUATES TECHNIQUES FOR SOLVING THEM, AND EXPLAINS HOW TO USE VARIOUS APPROACHES FOR DIFFERENT TYPES AND SIZES OF DATA SETS. FOR ALL APPLICATIONS DESCRIBED IN THE BOOK, PYTHON CODE AND EXAMPLE DATA SETS ARE PROVIDED. THE SUPPORTING DATA SETS HAVE BEEN CAREFULLY SELECTED FROM CONTEMPORARY ASTRONOMICAL SURVEYS (FOR EXAMPLE, THE SLOAN DIGITAL SKY SURVEY) AND ARE EASY TO DOWNLOAD AND USE. THE ACCOMPANYING PYTHON CODE IS PUBLICLY AVAILABLE, WELL DOCUMENTED, AND FOLLOWS UNIFORM CODING STANDARDS. TOGETHER, THE DATA SETS AND CODE ENABLE READERS TO REPRODUCE ALL THE FIGURES AND EXAMPLES, EVALUATE THE METHODS, AND ADAPT THEM TO THEIR OWN FIELDS OF INTEREST. DESCRIBES THE MOST USEFUL STATISTICAL AND DATA-MINING METHODS FOR EXTRACTING KNOWLEDGE FROM HUGE AND COMPLEX ASTRONOMICAL DATA SETS FEATURES REAL-WORLD DATA SETS FROM CONTEMPORARY ASTRONOMICAL SURVEYS USES A FREELY AVAILABLE PYTHON CODEBASE THROUGHOUT IDEAL FOR STUDENTS AND WORKING ASTRONOMERS

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Críticas:

Winner of the 2016 IAA Outstanding Publication Award, International Astrostatistics Association "Ivezic and colleagues at the University of Washington and the Georgia Institute of Technology have written a comprehensive, accessible, well-thought-out introduction to the new and burgeoning field of astrostatistics... The authors provide another valuable service by discussing how to access data from key astronomical research programs."--Choice "A substantial work that can be of value to students and scientists interesting in mining the vast amount of astronomical data collected to date... A well-prepared introduction to this material... If data mining and machine learning fall within your interest area, this text deserves a place on your shelf."--International Planetarium Society

Reseña del editor:

As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Neu kaufen Angebot ansehen

Versand: EUR 7,71
Von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

In den Warenkorb

Beste Suchergebnisse bei AbeBooks

1.

Zeljko Ivezic
Verlag: Princeton University Press
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Hardcover Anzahl: 1
Anbieter
THE SAINT BOOKSTORE
(Southport, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Princeton University Press. Hardback. Zustand: New. New copy - Usually dispatched within 2 working days. Bestandsnummer des Verkäufers B9780691151687

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 59,10
Währung umrechnen

In den Warenkorb

Versand: EUR 7,71
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

2.

Zeljko Ivezic, Andrew J. Connolly, Jacob Vanderplas
Verlag: Princeton University Press, United States (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Hardcover Anzahl: 1
Anbieter
The Book Depository
(London, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Princeton University Press, United States, 2014. Hardback. Zustand: New. Language: English . Brand New Book. As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers. Bestandsnummer des Verkäufers AAU9780691151687

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 70,01
Währung umrechnen

In den Warenkorb

Versand: Gratis
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

3.

Zeljko Ivezic (author), Andrew J. Connolly (author), Jacob T VanderPlas (author), Alexander Gray (author)
Verlag: Princeton University Press 2014-02-18, Princeton (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Hardcover Anzahl: > 20
Anbieter
Blackwell's
(Oxford, OX, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Princeton University Press 2014-02-18, Princeton, 2014. hardback. Zustand: New. Bestandsnummer des Verkäufers 9780691151687

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 61,99
Währung umrechnen

In den Warenkorb

Versand: EUR 8,33
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

4.

Zeljko Ivezic, Andrew J. Connolly, Alexander Gray,
Verlag: Princeton University Press, United States (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Hardcover Anzahl: 1
Anbieter
Book Depository International
(London, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Princeton University Press, United States, 2014. Hardback. Zustand: New. Language: English. Brand new Book. As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided.The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers. Bestandsnummer des Verkäufers AAU9780691151687

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 70,43
Währung umrechnen

In den Warenkorb

Versand: Gratis
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

5.

Ivezic,
Verlag: Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Anzahl: > 20
Anbieter
Books2Anywhere
(Fairford, GLOS, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Princeton University Press, 2014. HRD. Zustand: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Bestandsnummer des Verkäufers WP-9780691151687

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 61,45
Währung umrechnen

In den Warenkorb

Versand: EUR 10,00
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

6.

?eljko Ivezi?; Andrew J. Connolly; Jacob T VanderPlas; Alexander Gray
Verlag: Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Hardcover Anzahl: 1
Anbieter
European-Media-Service Mannheim
(Mannheim, Deutschland)
Bewertung
[?]

Buchbeschreibung Princeton University Press, 2014. Zustand: New. Bestandsnummer des Verkäufers EH9780691151687

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 72,05
Währung umrechnen

In den Warenkorb

Versand: EUR 2,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

7.

Željko Ivezić; Andrew J. Connolly; Jacob T VanderPlas; Alexander Gray
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Anzahl: 2
Anbieter
Speedy Hen LLC
(Sunrise, FL, USA)
Bewertung
[?]

Buchbeschreibung Zustand: New. Bookseller Inventory # ST0691151687. Bestandsnummer des Verkäufers ST0691151687

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 78,66
Währung umrechnen

In den Warenkorb

Versand: Gratis
Innerhalb USA
Versandziele, Kosten & Dauer

8.

Ivezi?, ?eljko; Connolly, Andrew; VanderPlas, Jacob; Gray, Alexander
Verlag: Princeton University Press
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Hardcover Anzahl: 2
Anbieter
WFL
(Holtsville, NY, USA)
Bewertung
[?]

Buchbeschreibung Princeton University Press. Hardcover. Zustand: New. 0691151687 Brand New ,Original Book , Direct from Source , Express 6-8 business days worldwide delivery. Bestandsnummer des Verkäufers DG#IL278270

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 77,58
Währung umrechnen

In den Warenkorb

Versand: EUR 4,17
Innerhalb USA
Versandziele, Kosten & Dauer

9.

?eljko Ivezi?; Andrew J. Connolly; Jacob T VanderPlas; Alexander Gray
Verlag: Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Hardcover Anzahl: 3
Anbieter
Ria Christie Collections
(Uxbridge, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Princeton University Press, 2014. Zustand: New. book. Bestandsnummer des Verkäufers ria9780691151687_rkm

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 79,06
Währung umrechnen

In den Warenkorb

Versand: EUR 4,30
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

10.

Željko Ivezić; Andrew J. Connolly; Jacob T VanderPlas; Alexander Gray
ISBN 10: 0691151687 ISBN 13: 9780691151687
Neu Anzahl: 2
Anbieter
Speedy Hen
(London, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Zustand: New. Bookseller Inventory # ST0691151687. Bestandsnummer des Verkäufers ST0691151687

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 66,00
Währung umrechnen

In den Warenkorb

Versand: EUR 21,10
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Es gibt weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen