Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.
Matthias Aschenbrenner is professor of mathematics at the University of California, Los Angeles. Lou van den Dries is professor of mathematics at the University of Illinois, Urbana-Champaign. Joris van der Hoeven is director of research at the French National Center for Scientific Research (CNRS).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Versand:
EUR 7,32
Innerhalb der USA
Versand:
EUR 4,13
Innerhalb der USA
Anbieter: Solr Books, Lincolnwood, IL, USA
Zustand: very_good. This books is in Very good condition. There may be a few flaws like shelf wear and some light wear. Bestandsnummer des Verkäufers BCV.0691175438.VG
Anzahl: 1 verfügbar
Anbieter: Labyrinth Books, Princeton, NJ, USA
Zustand: New. Bestandsnummer des Verkäufers 222926
Anzahl: 8 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. Series: Annals of Mathematics Studies. Num Pages: 880 pages, 12 line illus. BIC Classification: PBF. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152. . . 2017. Paperback. . . . . Bestandsnummer des Verkäufers V9780691175430
Anzahl: 15 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2416190103151
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 28186465-n
Anzahl: 4 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Series: Annals of Mathematics Studies. Num Pages: 880 pages, 12 line illus. BIC Classification: PBF. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152. . . 2017. Paperback. . . . . Books ship from the US and Ireland. Bestandsnummer des Verkäufers V9780691175430
Anzahl: 15 verfügbar
Anbieter: Grand Eagle Retail, Fairfield, OH, USA
Paperback. Zustand: new. Paperback. Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity.Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences. Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transser Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780691175430
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 28186465
Anzahl: 4 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers IB-9780691175430
Anzahl: 4 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers IB-9780691175430
Anzahl: 4 verfügbar