Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Matthias Aschenbrenner is professor of mathematics at the University of California, Los Angeles. Lou van den Dries is professor of mathematics at the University of Illinois, Urbana-Champaign. Joris van der Hoeven is director of research at the French National Center for Scientific Research (CNRS).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,30 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerEUR 14,62 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Labyrinth Books, Princeton, NJ, USA
Zustand: New. Bestandsnummer des Verkäufers 222926
Anzahl: 8 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Über den AutorMatthias Aschenbrenner is professor of mathematics at the University of California, Los Angeles. Lou van den Dries is professor of mathematics at the University of Illinois, Urbana-Champaign. Joris van. Bestandsnummer des Verkäufers 594886410
Anzahl: 1 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. Series: Annals of Mathematics Studies. Num Pages: 880 pages, 12 line illus. BIC Classification: PBF. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152. . . 2017. Paperback. . . . . Bestandsnummer des Verkäufers V9780691175430
Anzahl: 1 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WP-9780691175430
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WP-9780691175430
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780691175430_new
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 28186465-n
Anzahl: 4 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems.This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences. Bestandsnummer des Verkäufers 9780691175430
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 28186465
Anzahl: 4 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Series: Annals of Mathematics Studies. Num Pages: 880 pages, 12 line illus. BIC Classification: PBF. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152. . . 2017. Paperback. . . . . Books ship from the US and Ireland. Bestandsnummer des Verkäufers V9780691175430
Anzahl: 1 verfügbar