A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil’s conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil’s conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ℓ-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.
Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil’s conjecture. The proof of the product formula will appear in a sequel volume.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dennis Gaitsgory is professor of mathematics at Harvard University. He is the coauthor of A Study in Derived Algebraic Geometry. Jacob Lurie is professor of mathematics at Harvard University. He is the author of Higher Topos Theory (Princeton).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 65,64 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 14,88 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Labyrinth Books, Princeton, NJ, USA
Zustand: New. Bestandsnummer des Verkäufers 228648
Anzahl: 1 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WP-9780691182148
Anzahl: 5 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Über den AutorDennis Gaitsgory is professor of mathematics at Harvard University. He is the coauthor of A Study in Derived Algebraic Geometry. Jacob Lurie is professor of mathematics at Harvard University. He is. Bestandsnummer des Verkäufers 259147720
Anzahl: 5 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 32759715-n
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WP-9780691182148
Anzahl: 5 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 320. Bestandsnummer des Verkäufers 26383193886
Anzahl: 1 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. 526. Bestandsnummer des Verkäufers B9780691182148
Anzahl: 5 verfügbar
Anbieter: PlumCircle, West Mifflin, PA, USA
paperback. Zustand: Fine. Publisher overstock. May have remainder mark / minimal shelfwear. 99% of orders arrive in 4-10 days. Discounted shipping on multiple books. Bestandsnummer des Verkäufers mon0001297135
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ¿-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume. Bestandsnummer des Verkäufers 9780691182148
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 320. Bestandsnummer des Verkäufers 379628737
Anzahl: 1 verfügbar