The book is a revised and updated version of the lectures given by the author at the University of Timi§oara during the academic year 1990-1991. Its goal is to present in detail someold and new aspects ofthe geometry ofsymplectic and Poisson manifolds and to point out some of their applications in Hamiltonian mechanics and geometric quantization. The material is organized as follows. In Chapter 1 we collect some general facts about symplectic vector spaces, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study ofHamiltonian mechanics. We present here the gen eral theory ofHamiltonian mechanicalsystems, the theory ofthe corresponding Pois son bracket and also some examples ofinfinite-dimensional Hamiltonian mechanical systems. Chapter 3 starts with some standard facts concerning the theory of Lie groups and Lie algebras and then continues with the theory ofmomentum mappings and the Marsden-Weinstein reduction. The theory of Hamilton-Poisson mechan ical systems makes the object of Chapter 4. Chapter 5 js dedicated to the study of the stability of the equilibrium solutions of the Hamiltonian and the Hamilton Poisson mechanical systems. We present here some of the remarcable results due to Holm, Marsden, Ra~iu and Weinstein. Next, Chapter 6 and 7 are devoted to the theory of geometric quantization where we try to solve, in a geometrical way, the so called Dirac problem from quantum mechanics. We follow here the construc tion given by Kostant and Souriau around 1964.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The book is a revised and updated version of the lectures given by the author at the University of Timi§oara during the academic year 1990-1991. Its goal is to present in detail someold and new aspects ofthe geometry ofsymplectic and Poisson manifolds and to point out some of their applications in Hamiltonian mechanics and geometric quantization. The material is organized as follows. In Chapter 1 we collect some general facts about symplectic vector spaces, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study ofHamiltonian mechanics. We present here the gen eral theory ofHamiltonian mechanicalsystems, the theory ofthe corresponding Pois son bracket and also some examples ofinfinite-dimensional Hamiltonian mechanical systems. Chapter 3 starts with some standard facts concerning the theory of Lie groups and Lie algebras and then continues with the theory ofmomentum mappings and the Marsden-Weinstein reduction. The theory of Hamilton-Poisson mechan ical systems makes the object of Chapter 4. Chapter 5 js dedicated to the study of the stability of the equilibrium solutions of the Hamiltonian and the Hamilton Poisson mechanical systems. We present here some of the remarcable results due to Holm, Marsden, Ra~iu and Weinstein. Next, Chapter 6 and 7 are devoted to the theory of geometric quantization where we try to solve, in a geometrical way, the so called Dirac problem from quantum mechanics. We follow here the construc tion given by Kostant and Souriau around 1964.
This volume presents various aspects of the geometry of symplectic and Poisson manifolds, and applications in Hamiltonian mechanics and geometric quantization are indicated.
Chapter 1 presents some general facts about symplectic vector space, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study of Hamiltonian mechanics. Chapter 3 considers some standard facts concerning Lie groups and algebras which lead to the theory of momentum mappings and the Marsden--Weinstein reduction. Chapters 4 and 5 consider the theory and the stability of equilibrium solutions of Hamilton--Poisson mechanical systems. Chapters 6 and 7 are devoted to the theory of geometric quantization. This leads, in Chapter 8, to topics such as foliated cohomology, the theory of the Dolbeault--Kostant complex, and their applications. A discussion of the relation between geometric quantization and the Marsden--Weinstein reduction is presented in Chapter 9. The final chapter considers extending the theory of geometric quantization to Poisson manifolds, via the theory of symplectic groupoids.
Each chapter concludes with problems and solutions, many of which present significant applications and, in some cases, major theorems.
For graduate students and researchers whose interests and work involve symplectic geometry and Hamiltonian mechanics.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,27 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 2,27 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 2574121-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. This volume presents various aspects of the geometry of symplectic and Poisson manifolds, and applications in Hamiltonian mechanics and geometric quantization are indicated. Chapter 1 presents some general facts about symplectic vector space, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study of Hamiltonian mechanics. Chapter 3 considers some standard facts concerning Lie groups and algebras which lead to the theory of momentum mappings and the Marsden Weinstein reduction. Chapters 4 and 5 consider the theory and the stability of equilibrium solutions of Hamilton-Poisson mechanical systems. Chapters 6 and 7 are devoted to the theory of geometric quantization. This leads, in Chapter 8, to topics such as foliated cohomology, the theory of the Dolbeault-Kostant complex, and their applications, A discussion of the relation between geometric quantization and the Marsden Weinstein reduction is presented in Chapter 9. The final chapter considers extending the theory of geometric quantization to Poisson manifolds, via the theory of symplectic groupoids.Each chapter concludes with problems and solutions, many of which present significant applications and, in some cases, major theorems. The text is suitable for graduate students and researchers whose interests and work involve symplectic geometry and Hamiltonian mechanics. Presents various aspects of the geometry of symplectic and Poisson manifolds, and applications in Hamiltonian mechanics and geometric quantization . Each chapter concludes with problems and solutions, many of which present significant applications, and in some cases, major theorems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780792323068
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2416190181278
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780792323068_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 2574121-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 292. Bestandsnummer des Verkäufers 26544266
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 292. Bestandsnummer des Verkäufers 18544256
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 292 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Bestandsnummer des Verkäufers 8384981
Anzahl: 4 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 616. Bestandsnummer des Verkäufers C9780792323068
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduction. Background Notations. 1. Symplectic Geometry. 2. Hamiltonian Mechanics. 3. Lie Groups Momentum Mappings Reduction. 4. Hamilton--Poisson Mechanics. 5. Hamiltonian Mechanical Systems and Stability. 6. Geometric Prequantization. 7. Geometri. Bestandsnummer des Verkäufers 5966813
Anzahl: Mehr als 20 verfügbar