Quantum Chaos and Mesoscopic Systems: Mathematical Methods in the Quantum Signatures of Chaos: 397 (Mathematics and Its Applications) - Hardcover

Hurt, N. E.; Hurt, Norman

 
9780792344599: Quantum Chaos and Mesoscopic Systems: Mathematical Methods in the Quantum Signatures of Chaos: 397 (Mathematics and Its Applications)

Inhaltsangabe

4. 2 Variance of Quantum Matrix Elements. 125 4. 3 Berry’s Trick and the Hyperbolic Case 126 4. 4 Nonhyperbolic Case . . . . . . . 128 4. 5 Random Matrix Theory . . . . . 128 4. 6 Baker’s Map and Other Systems 129 4. 7 Appendix: Baker’s Map . . . . . 129 5 Error Terms 133 5. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 133 5. 2 The Riemann Zeta Function in Periodic Orbit Theory 135 5. 3 Form Factor for Primes . . . . . . . . . . . . . . . . . 137 5. 4 Error Terms in Periodic Orbit Theory: Co-compact Case. 138 5. 5 Binary Quadratic Forms as a Model . . . . . . . . . . . . 139 6 Co-Finite Model for Quantum Chaology 141 6. 1 Introduction. . . . . . . . 141 6. 2 Co-finite Models . . . . . 141 6. 3 Geodesic Triangle Spaces 144 6. 4 L-Functions. . . . . . . . 145 6. 5 Zelditch’s Prime Geodesic Theorem. 146 6. 6 Zelditch’s Pseudo Differential Operators 147 6. 7 Weyl’s Law Generalized 148 6. 8 Equidistribution Theory . . . . . . . . . 150 7 Landau Levels and L-Functions 153 7. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 153 7. 2 Landau Model: Mechanics on the Plane and Sphere. 153 7. 3 Landau Model: Mechanics on the Half-Plane 155 7. 4 Selberg’s Spectral Theorem . . . . . . . . . . . 157 7. 5 Pseudo Billiards . . . . . . . . . . . . . . . . . 158 7. 6 Landau Levels on a Compact Riemann Surface 159 7. 7 Automorphic Forms . . . . . 160 7. 8 Maass-Selberg Trace Formula 162 7. 9 Degeneracy by Selberg. . . . 163 7. 10 Hecke Operators . . . . . . . 163 7. 11 Selberg Trace Formula for Hecke Operators 167 7. 12 Eigenvalue Statistics on X . . . . 169 7. 13 Mesoscopic Devices. . . . . . . . 170 7. 14 Hall Conductance on Leaky Tori 170 7.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

4. 2 Variance of Quantum Matrix Elements. 125 4. 3 Berry's Trick and the Hyperbolic Case 126 4. 4 Nonhyperbolic Case . . . . . . . 128 4. 5 Random Matrix Theory . . . . . 128 4. 6 Baker's Map and Other Systems 129 4. 7 Appendix: Baker's Map . . . . . 129 5 Error Terms 133 5. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 133 5. 2 The Riemann Zeta Function in Periodic Orbit Theory 135 5. 3 Form Factor for Primes . . . . . . . . . . . . . . . . . 137 5. 4 Error Terms in Periodic Orbit Theory: Co-compact Case. 138 5. 5 Binary Quadratic Forms as a Model . . . . . . . . . . . . 139 6 Co-Finite Model for Quantum Chaology 141 6. 1 Introduction. . . . . . . . 141 6. 2 Co-finite Models . . . . . 141 6. 3 Geodesic Triangle Spaces 144 6. 4 L-Functions. . . . . . . . 145 6. 5 Zelditch's Prime Geodesic Theorem. 146 6. 6 Zelditch's Pseudo Differential Operators 147 6. 7 Weyl's Law Generalized 148 6. 8 Equidistribution Theory . . . . . . . . . 150 7 Landau Levels and L-Functions 153 7. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 153 7. 2 Landau Model: Mechanics on the Plane and Sphere. 153 7. 3 Landau Model: Mechanics on the Half-Plane 155 7. 4 Selberg's Spectral Theorem . . . . . . . . . . . 157 7. 5 Pseudo Billiards . . . . . . . . . . . . . . . . . 158 7. 6 Landau Levels on a Compact Riemann Surface 159 7. 7 Automorphic Forms . . . . . 160 7. 8 Maass-Selberg Trace Formula 162 7. 9 Degeneracy by Selberg. . . . 163 7. 10 Hecke Operators . . . . . . . 163 7. 11 Selberg Trace Formula for Hecke Operators 167 7. 12 Eigenvalue Statistics on X . . . . 169 7. 13 Mesoscopic Devices. . . . . . . . 170 7. 14 Hall Conductance on Leaky Tori 170 7.

Reseña del editor

This is the first monograph to present a comprehensive treatment of the mathematical foundations of quantum chaos. Precise results in this area involve an exciting mixture of analytical number theory, zeta and L-functions, random matrix theory, scattering theory, the Selberg trace formula, and related global functional analysis. Many examples are presented including polygonal and standard billiards systems and models on the pseudosphere. The physics of both compact and finite volume systems are discussed, as well as systems in the presence of a magnetic field. Results on the spectra of Gutzwiller models for mesoscopic systems are discussed including questions of dissolving eigenvalues, simplicity of the spectra and exceptional eigenvalues. Relationships to isometric-isospectral questions in physics are discussed. Finally, applications of quantum chaos to recent results on mesoscopic physics are discussed, in particular transport properties in these devices.
Starting from simple examples, the text leads the reader through the most recent work of Sarnak, Luo and coworkers on arithmetic chaos, Zelditch, Degli Esposti and coworkers on quantum ergodicity, Bleher and coworkers on integrable systems, Gutkin, Veech and coworkers on polygonal billiards, Sarnak, Phillips and coworkers on spectra of Gutzwiller models, Mueller and others on scattering theory, Berry, Keating, Steiner, Aurich, Bolte, Schmit, Bogomolny and coworkers on quantum chaos and Marcus Beenakker and coworkers on mesoscopic systems.
Audience: This book will be of use to physicists, mathematicians, and engineers interested in quantum chaos and its applications to mesoscopic systems.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9789048148110: Quantum Chaos and Mesoscopic Systems: Mathematical Methods in the Quantum Signatures of Chaos: 397 (Mathematics and Its Applications)

Vorgestellte Ausgabe

ISBN 10:  9048148111 ISBN 13:  9789048148110
Verlag: Springer, 2010
Softcover