Verwandte Artikel zu Generalized Convexity, Generalized Monotonicity: Recent...

Generalized Convexity, Generalized Monotonicity: Recent Results : Recent Results: 27 (Nonconvex Optimization and Its Applications) - Hardcover

 
9780792350880: Generalized Convexity, Generalized Monotonicity: Recent Results : Recent Results: 27 (Nonconvex Optimization and Its Applications)

Inhaltsangabe

A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo­ metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man­ agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob­ lems.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo­ metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man­ agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob­ lems.

Reseña del editor

The geometrical structure induced by convexity in mathematical programming has many useful properties: continuity and differentiability of the functions, separability and optimality conditions, duality, sensibility of the optimal solutions, etc. Several of the most interesting ones are preserved when convexity is relaxed in quasiconvexity or pseudoconvexity (a function is quasi-convex if its lower level sets are convex). This is still the case for variational inequalities problems when the classical monotonicity assumption on the map is relaxed in quasimonotonicity or pseudomonotonicity.
This volume contains 23 selected lectures presented at the most recent international symposium on generalized convexity. It provides an up-to-date review of recent developments.
Audience: The book will be of value to researchers and students working in economics, mathematical programming, operations research, management sciences, equilibrium problems, engineering and probability.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781461333432: Generalized Convexity, Generalized Monotonicity: Recent Results: Recent Results: 27 (Nonconvex Optimization and Its Applications)

Vorgestellte Ausgabe

ISBN 10:  1461333431 ISBN 13:  9781461333432
Verlag: Springer, 2011
Softcover

Suchergebnisse für Generalized Convexity, Generalized Monotonicity: Recent...

Foto des Verkäufers

Crouzeix, Jean-Pierre|Martinez Legaz, Juan Enrique|Volle, Michel
Verlag: Springer US, 1998
ISBN 10: 079235088X ISBN 13: 9780792350880
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Gebunden. Zustand: New. A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconve. Bestandsnummer des Verkäufers 458440054

Verkäufer kontaktieren

Neu kaufen

EUR 227,74
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 1998
ISBN 10: 079235088X ISBN 13: 9780792350880
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9780792350880_new

Verkäufer kontaktieren

Neu kaufen

EUR 228,30
Währung umrechnen
Versand: EUR 5,77
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 1998
ISBN 10: 079235088X ISBN 13: 9780792350880
Neu Hardcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2416190182872

Verkäufer kontaktieren

Neu kaufen

EUR 202,01
Währung umrechnen
Versand: EUR 63,68
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Jean-Pierre Crouzeix
Verlag: Springer Us Aug 1998, 1998
ISBN 10: 079235088X ISBN 13: 9780792350880
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems. Bestandsnummer des Verkäufers 9780792350880

Verkäufer kontaktieren

Neu kaufen

EUR 318,78
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb