The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]’ but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi’s results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi’s bound) remains open. There are some generalization of the problem of Jacobi’s bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen tial equations were actively developed by F. Riquier [RiqlO] and M.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen tial equations were actively developed by F. Riquier [RiqlO] and M.
This book is the first monograph wholly devoted to the investigation of differential and difference dimension theory. The differential dimension polynomial describes in exact terms the degree of freedom of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations.
Difference algebra arises from the study of algebraic difference equations and therefore bears a considerable resemblance to its differential counterpart. Difference algebra was developed in the same period as differential algebra and it has the same founder, J. Ritt. It grew to a mathematical area with its own ideas and methods mainly due to the work of R. Cohn, who raised difference algebra to the same level as differential algebra. The relatively new science of computer algebra has given strong impulses to the theory of dimension polynomials, now that packages such as MAPLE enable the solution of many problems which cannot be solved otherwise. Applications of differential and difference dimension theory can be found in many fields of mathematics, as well as in theoretical physics, system theory and other areas of science.
Audience: This book will be of interest to researchers and graduate students whose work involves differential and difference equations, algebra and number theory, partial differential equations, combinatorics and mathematical physics.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2416190183077
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 756107-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780792354840_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 756107-n
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen tial equations were actively developed by F. Riquier [RiqlO] and M. 444 pp. Englisch. Bestandsnummer des Verkäufers 9780792354840
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential d. Bestandsnummer des Verkäufers 5968690
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 826. Bestandsnummer des Verkäufers C9780792354840
Anzahl: Mehr als 20 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Differential and Difference Dimension Polynomials | Alexander V. Mikhalev (u. a.) | Buch | xiii | Englisch | 1998 | Springer Netherland | EAN 9780792354840 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 102550347
Anzahl: 5 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen tial equations were actively developed by F. Riquier [RiqlO] and M.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 444 pp. Englisch. Bestandsnummer des Verkäufers 9780792354840
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen tial equations were actively developed by F. Riquier [RiqlO] and M. Bestandsnummer des Verkäufers 9780792354840
Anzahl: 1 verfügbar