This book is devoted to the mathematical theory of regularization methods and gives an account of the currently available results about regularization methods for linear and nonlinear ill-posed problems. Both continuous and iterative regularization methods are considered in detail with special emphasis on the development of parameter choice and stopping rules which lead to optimal convergence rates.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
`It is written in a very clear style, the material is well organized, and there is an extensive bibliography with 290 items. There is no doubt that this book belongs to the modern standard references on ill-posed and inverse problems. It can be recommended not only to mathematicians interested in this, but to students with a basic knowledge of functional analysis, and to scientists and engineers working in this field.'
Mathematical Reviews Clippings, 97k
`... it will be an extremely valuable tool for researchers in the field, who will find under the same cover and with unified notation material that is otherwise scattered in extremely diverse publications.'
SIAM Review, 41:2 (1999)
This book is devoted to the mathematical theory of regularization methods and gives an account of the currently available results about regularization methods for linear and nonlinear ill-posed problems. Both continuous and iterative regularization methods are considered in detail with special emphasis on the development of parameter choice and stopping rules which lead to optimal convergence rates.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
Softcover reprint of the original 1st ed. 2000. 16 x 23 cm. VIII, 322 S. VIII, 322 p. Softcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. (Mathematics and Its Applications). Sprache: Englisch. Bestandsnummer des Verkäufers 437ZB
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book is devoted to the mathematical theory of regularization methods and gives an account of the currently available results about regularization methods for linear and nonlinear ill-posed problems. Both continuous and iterative regularization metho. Bestandsnummer des Verkäufers 5969186
Anzahl: Mehr als 20 verfügbar
Anbieter: BennettBooksLtd, North Las Vegas, NV, USA
Paperback. Zustand: New. In shrink wrap. Looks like an interesting title! Bestandsnummer des Verkäufers Q-0792361407
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In English. Bestandsnummer des Verkäufers ria9780792361404_new
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -In the last two decades, the field of inverse problems has certainly been one of the fastest growing areas in applied mathematics. This growth has largely been driven by the needs of applications both in other sciences and in industry. In Chapter 1, we will give a short overview over some classes of inverse problems of practical interest. Like everything in this book, this overview is far from being complete and quite subjective. As will be shown, inverse problems typically lead to mathematical models that are not well-posed in the sense of Hadamard, i.e., to ill-posed problems. This means especially that their solution is unstable under data perturbations. Numerical meth ods that can cope with this problem are the so-called regularization methods. This book is devoted to the mathematical theory of regularization methods. For linear problems, this theory can be considered to be relatively complete and will be de scribed in Chapters 2 - 8. For nonlinear problems, the theory is so far developed to a much lesser extent. We give an account of some of the currently available results, as far as they might be of lasting value, in Chapters 10 and 11. Although the main emphasis of the book is on a functional analytic treatment in the context of operator equations, we include, for linear problems, also some information on numerical aspects in Chapter 9.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 332 pp. Englisch. Bestandsnummer des Verkäufers 9780792361404
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the last two decades, the field of inverse problems has certainly been one of the fastest growing areas in applied mathematics. This growth has largely been driven by the needs of applications both in other sciences and in industry. In Chapter 1, we will give a short overview over some classes of inverse problems of practical interest. Like everything in this book, this overview is far from being complete and quite subjective. As will be shown, inverse problems typically lead to mathematical models that are not well-posed in the sense of Hadamard, i.e., to ill-posed problems. This means especially that their solution is unstable under data perturbations. Numerical meth ods that can cope with this problem are the so-called regularization methods. This book is devoted to the mathematical theory of regularization methods. For linear problems, this theory can be considered to be relatively complete and will be de scribed in Chapters 2 - 8. For nonlinear problems, the theory is so far developed to a much lesser extent. We give an account of some of the currently available results, as far as they might be of lasting value, in Chapters 10 and 11. Although the main emphasis of the book is on a functional analytic treatment in the context of operator equations, we include, for linear problems, also some information on numerical aspects in Chapter 9. 332 pp. Englisch. Bestandsnummer des Verkäufers 9780792361404
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In the last two decades, the field of inverse problems has certainly been one of the fastest growing areas in applied mathematics. This growth has largely been driven by the needs of applications both in other sciences and in industry. In Chapter 1, we will give a short overview over some classes of inverse problems of practical interest. Like everything in this book, this overview is far from being complete and quite subjective. As will be shown, inverse problems typically lead to mathematical models that are not well-posed in the sense of Hadamard, i.e., to ill-posed problems. This means especially that their solution is unstable under data perturbations. Numerical meth ods that can cope with this problem are the so-called regularization methods. This book is devoted to the mathematical theory of regularization methods. For linear problems, this theory can be considered to be relatively complete and will be de scribed in Chapters 2 - 8. For nonlinear problems, the theory is so far developed to a much lesser extent. We give an account of some of the currently available results, as far as they might be of lasting value, in Chapters 10 and 11. Although the main emphasis of the book is on a functional analytic treatment in the context of operator equations, we include, for linear problems, also some information on numerical aspects in Chapter 9. Bestandsnummer des Verkäufers 9780792361404
Anzahl: 1 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9780792361404
Anzahl: 1 verfügbar
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
Paperback. Zustand: New. In the last two decades, the field of inverse problems has certainly been one of the fastest growing areas in applied mathematics. This growth has largely been driven by the needs of applications both in other sciences and in industry. In Chapter 1, we will give a short overview over some classes of inverse problems of practical interest. Like everything in this book, this overview is far from being complete and quite subjective. As will be shown, inverse problems typically lead to mathematical models that are not well-posed in the sense of Hadamard, i.e., to ill-posed problems. This means especially that their solution is unstable under data perturbations. Numerical meth ods that can cope with this problem are the so-called regularization methods. This book is devoted to the mathematical theory of regularization methods. For linear problems, this theory can be considered to be relatively complete and will be de scribed in Chapters 2 - 8. For nonlinear problems, the theory is so far developed to a much lesser extent. We give an account of some of the currently available results, as far as they might be of lasting value, in Chapters 10 and 11. Although the main emphasis of the book is on a functional analytic treatment in the context of operator equations, we include, for linear problems, also some information on numerical aspects in Chapter 9. Softcover reprint of the original 1st ed. 2000. Bestandsnummer des Verkäufers LU-9780792361404
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. In the last two decades, the field of inverse problems has certainly been one of the fastest growing areas in applied mathematics. This growth has largely been driven by the needs of applications both in other sciences and in industry. In Chapter 1, we will give a short overview over some classes of inverse problems of practical interest. Like everything in this book, this overview is far from being complete and quite subjective. As will be shown, inverse problems typically lead to mathematical models that are not well-posed in the sense of Hadamard, i.e., to ill-posed problems. This means especially that their solution is unstable under data perturbations. Numerical meth ods that can cope with this problem are the so-called regularization methods. This book is devoted to the mathematical theory of regularization methods. For linear problems, this theory can be considered to be relatively complete and will be de scribed in Chapters 2 - 8. For nonlinear problems, the theory is so far developed to a much lesser extent. We give an account of some of the currently available results, as far as they might be of lasting value, in Chapters 10 and 11. Although the main emphasis of the book is on a functional analytic treatment in the context of operator equations, we include, for linear problems, also some information on numerical aspects in Chapter 9. Softcover reprint of the original 1st ed. 2000. Bestandsnummer des Verkäufers LU-9780792361404
Anzahl: Mehr als 20 verfügbar